Antonio Rovira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5655102/publications.pdf

Version: 2024-02-01

50	1,364	21 h-index	37
papers	citations		g-index
50	50	50	1135
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Thermodynamic cycles for solar thermal power plants: A review. Wiley Interdisciplinary Reviews: Energy and Environment, 2022, 11 , e420.	1.9	7
2	A new design of multi-tube receiver for Fresnel technology to increase the thermal performance. Applied Thermal Engineering, 2022, 204, 117970.	3.0	11
3	Maturation of critical technologies for the DEMO balance of plant systems. Fusion Engineering and Design, 2022, 179, 113096.	1.0	24
4	Enhancement of SunDial optical performance handling cosine and end losses. AIP Conference Proceedings, 2022, , .	0.3	3
5	Modular micro-trigeneration system for a novel rotatory solar Fresnel collector: A design space analysis. Energy Conversion and Management, 2021, 227, 113599.	4.4	9
6	Advanced thermodynamic cycles for finite heat sources: Proposals for closed and open heat sources applications. Applied Thermal Engineering, 2020, 167, 114805.	3.0	9
7	Proposal of a new design of source heat exchanger for the technical feasibility of solar thermal plants coupled to supercritical power cycles. Solar Energy, 2020, 211, 1027-1041.	2.9	22
8	Analysis of an Integrated Solar Combined Cycle with Recuperative Gas Turbine and Double Recuperative and Double Expansion Propane Cycle. Entropy, 2020, 22, 476.	1.1	6
9	A fast and accurate methodology for the calculation of the shading and blocking efficiency in central receiver systems. Renewable Energy, 2020, 154, 58-70.	4.3	3
10	Proposal and analysis of an integrated solar combined cycle with partial recuperation. Energy, 2020, 198, 117379.	4.5	15
11	A new method for the selection of candidates for shading and blocking in central receiver systems. Renewable Energy, 2020, 152, 961-973.	4.3	7
12	Proposal of optimized power cycles for the DEMO power plant (EUROfusion). Fusion Engineering and Design, 2019, 148, 111290.	1.0	2
13	Performance of an Organic Rankine Cycle with two expanders at off-design operation. Applied Thermal Engineering, 2019, 149, 688-701.	3.0	12
14	Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration. Energies, 2018, 11, 1064.	1.6	13
15	Proposal and analysis of different methodologies for the shading and blocking efficiency in central receivers systems. Solar Energy, 2017, 144, 475-488.	2.9	8
16	Integrated solar combined cycles using gas turbines with partial recuperation and solar integration at different pressure levels. AIP Conference Proceedings, 2017, , .	0.3	4
17	Methodology for the thermal characterization of linear Fresnel collectors: Comparative of different configurations and working fluids. AIP Conference Proceedings, 2017, , .	0.3	3
18	Off-design analysis of a Hybrid Rankine-Brayton cycle used as the power block of a solar thermal power plant. Energy, 2017, 134, 369-381.	4.5	20

#	Article	IF	CITATIONS
19	Thermoeconomic Coherence: A Methodology for the Analysis and Optimisation of Thermal Systems. Entropy, 2016, 18, 250.	1.1	3
20	A new approach for the prediction of thermal efficiency in solar receivers. Energy Conversion and Management, 2016, 123, 498-511.	4.4	21
21	Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver. Applied Thermal Engineering, 2016, 104, 162-175.	3.0	41
22	Thermal efficiency of direct, inverse and sCO 2 gas turbine cycles intended for small power plants. Energy, 2016, 100, 66-72.	4.5	16
23	Parabolic trough collector or linear Fresnel collector? A comparison of optical features including thermal quality based on commercial solutions. Solar Energy, 2016, 124, 198-215.	2.9	53
24	Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems. Applied Energy, 2016, 162, 990-1000.	5.1	81
25	A Quest to the Cheapest Method for Electricity Generation in Concentrating Solar Power Plants. Energy Procedia, 2015, 75, 514-520.	1.8	2
26	Performance study of solar power plants with CO2 as working fluid. A promising design window. Energy Conversion and Management, 2015, 92, 36-46.	4.4	42
27	Proposal and study of a balanced hybrid Rankine–Brayton cycle for low-to-moderate temperature solar power plants. Energy, 2015, 89, 305-317.	4.5	12
28	A Concentrating Solar Power Prototype for validating a new Fresnel-based plant design. Energy Procedia, 2015, 75, 423-429.	1.8	2
29	Analysis and optimisation of combined cycles gas turbines working with partial recuperation. Energy Conversion and Management, 2015, 106, 1097-1108.	4.4	24
30	Performance of a 5 kWe Solar-only Organic Rankine Unit Coupled to a Reverse Osmosis Plant. Energy Procedia, 2014, 49, 2251-2260.	1.8	36
31	On the improvement of annual performance of solar thermal power plants through exergy management. International Journal of Energy Research, 2014, 38, 658-673.	2.2	10
32	A First and Second Thermodynamics Law Analysis of a Hydrogen-Fueled Microgas Turbine for Combined Heat and Power Generation. Journal of Engineering for Gas Turbines and Power, 2014, 136, .	0.5	5
33	A direct numerical integration (DNI) method to obtain wall thermal response factors. Energy and Buildings, 2014, 81, 363-370.	3.1	4
34	Thermodynamic cycles optimised for medium enthalpy units of concentrating solar power. Energy, 2014, 67, 176-185.	4.5	26
35	Performance of a 5kWe Organic Rankine Cycle at part-load operation. Applied Energy, 2014, 120, 147-158.	5.1	65
36	Comparison of Heat Transfer Fluid and Direct Steam Generation technologies for Integrated Solar Combined Cycles. Applied Thermal Engineering, 2013, 52, 264-274.	3.0	101

#	Article	IF	CITATIONS
37	Optimization of Brayton cycles for low-to-moderate grade thermal energy sources. Energy, 2013, 55, 403-416.	4.5	30
38	A methodology for the geometric design of heat recovery steam generators applying genetic algorithms. Applied Thermal Engineering, 2013, 52, 77-83.	3.0	24
39	Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers. Applied Thermal Engineering, 2012, 35, 220-232.	3.0	41
40	Thermoeconomic optimisation of heat recovery steam generators of combined cycle gas turbine power plants considering off-design operation. Energy Conversion and Management, 2011, 52, 1840-1849.	4.4	69
41	Energy management in solar thermal power plants with double thermal storage system and subdivided solar field. Applied Energy, 2011, 88, 4055-4066.	5.1	46
42	Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors. Applied Energy, 2011, 88, 3228-3238.	5.1	214
43	A model to predict the behaviour at part load operation of once-through heat recovery steam generators working with water at supercritical pressure. Applied Thermal Engineering, 2010, 30, 1652-1658.	3.0	30
44	Study of the Influence of the Nominal Power on the Selection of the CCGT Power Plant Optimum Configuration Including Supercritical Configurations. , 2008, , .		0
45	The Influence of Atmospheric Conditions on the Performance of Combined Cycle Gas Turbine Power Plants., 2006,, 495.		3
46	On existence of trends applicable to thermoeconomic optimisation of combined cycle gas turbine power plants. Journal of the Energy Institute, 2006, 79, 110-115.	2.7	2
47	A new methodology to solve non-linear equation systems using genetic algorithms. Application to combined cyclegas turbine simulation. International Journal for Numerical Methods in Engineering, 2005, 63, 1424-1435.	1.5	21
48	Influence of the heat recovery steam generator design parameters on the thermoeconomic performances of combined cycle gas turbine power plants. International Journal of Energy Research, 2004, 28, 1243-1254.	2.2	29
49	Thermoeconomic optimization of combined cycle gas turbine power plants using genetic algorithms. Applied Thermal Engineering, 2003, 23, 2169-2182.	3.0	129
50	Design of Carbon Pistons Using Transient Heat Transfer and Stress Analyses. , 2001, , .		4