
## Jun Kikuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5654630/publications.pdf Version: 2024-02-01



Іны Кікнені

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.<br>Nature, 2013, 504, 446-450.                                                                              | 27.8 | 3,901     |
| 2  | Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 2011, 469, 543-547.                                                                                     | 27.8 | 1,836     |
| 3  | Comparative Genome Analysis of Lactobacillus reuteri and Lactobacillus fermentum Reveal a Genomic<br>Island for Reuterin and Cobalamin Production. DNA Research, 2008, 15, 151-161.                       | 3.4  | 255       |
| 4  | Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitinâ€like domain. EMBO Reports,<br>2003, 4, 301-306.                                                                                  | 4.5  | 233       |
| 5  | Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nature Plants, 2019, 5, 153-159.                                                                                | 9.3  | 203       |
| 6  | Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in <i>Arabidopsis</i> .<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 725-730. | 7.1  | 174       |
| 7  | Dissection of genotype–phenotype associations in rice grains using metabolome quantitative trait<br>loci analysis. Plant Journal, 2012, 70, 624-636.                                                      | 5.7  | 173       |
| 8  | Strengthening of the intestinal epithelial tight junction by <i>Bifidobacterium bifidum</i> .<br>Physiological Reports, 2015, 3, e12327.                                                                  | 1.7  | 167       |
| 9  | Spectroscopic and Mutational Analysis of the Blue-Light Photoreceptor AppA:Â A Novel Photocycle<br>Involving Flavin Stacking with an Aromatic Amino Acidâ€. Biochemistry, 2003, 42, 6726-6734.            | 2.5  | 155       |
| 10 | PRIMe: a Web site that assembles tools for metabolomics and transcriptomics. In Silico Biology, 2008, 8, 339-45.                                                                                          | 0.9  | 149       |
| 11 | Stable Isotope Labeling of Arabidopsis thaliana for an NMR-Based Metabolomics Approach. Plant and<br>Cell Physiology, 2004, 45, 1099-1104.                                                                | 3.1  | 145       |
| 12 | Oral Administration of Porphyromonas gingivalis Alters the Gut Microbiome and Serum Metabolome.<br>MSphere, 2018, 3, .                                                                                    | 2.9  | 134       |
| 13 | Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Scientific Reports, 2015, 5, 13548.                                                   | 3.3  | 126       |
| 14 | Statistical Indices for Simultaneous Large-Scale Metabolite Detections for a Single NMR Spectrum.<br>Analytical Chemistry, 2010, 82, 1653-1658.                                                           | 6.5  | 121       |
| 15 | Recognition of Guanineâ^'Guanine Mismatches by the Dimeric Form of 2-Amino-1,8-naphthyridine.<br>Journal of the American Chemical Society, 2001, 123, 12650-12657.                                        | 13.7 | 120       |
| 16 | Multiple Omics Uncovers Host–Gut Microbial Mutualism During Prebiotic Fructooligosaccharide<br>Supplementation. DNA Research, 2014, 21, 469-480.                                                          | 3.4  | 101       |
| 17 | Application of a Deep Neural Network to Metabolomics Studies and Its Performance in Determining<br>Important Variables. Analytical Chemistry, 2018, 90, 1805-1810.                                        | 6.5  | 101       |
| 18 | Meta-Analysis of Fecal Microbiota and Metabolites in Experimental Colitic Mice during the<br>Inflammatory and Healing Phases. Nutrients, 2017, 9, 1329.                                                   | 4.1  | 100       |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems:<br>Coarse Grained Views of Metabolic Pathways. PLoS ONE, 2008, 3, e3805.                                                                   | 2.5  | 78        |
| 20 | Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase<br>agricultural crop yield. Proceedings of the National Academy of Sciences of the United States of<br>America, 2020, 117, 14552-14560. | 7.1  | 77        |
| 21 | Toward better annotation in plant metabolomics: isolation and structure elucidation of 36<br>specialized metabolites from Oryza sativa (rice) by using MS/MS and NMR analyses. Metabolomics, 2014,<br>10, 543-555.                            | 3.0  | 76        |
| 22 | Methylated Cytokinins from the Phytopathogen <i>Rhodococcus fascians</i> Mimic Plant Hormone<br>Activity. Plant Physiology, 2015, 169, 1118-1126.                                                                                             | 4.8  | 75        |
| 23 | Profiling Polar and Semipolar Plant Metabolites throughout Extraction Processes Using a Combined<br>Solution-State and High-Resolution Magic Angle Spinning NMR Approach. Analytical Chemistry, 2010,<br>82, 1643-1652.                       | 6.5  | 72        |
| 24 | Evaluation of a Semipolar Solvent System as a Step toward Heteronuclear Multidimensional<br>NMR-Based Metabolomics for <sup>13</sup> C-Labeled Bacteria, Plants, and Animals. Analytical<br>Chemistry, 2011, 83, 719-726.                     | 6.5  | 72        |
| 25 | The Circadian Clock Modulates Water Dynamics and Aquaporin Expression in Arabidopsis Roots. Plant and Cell Physiology, 2011, 52, 373-383.                                                                                                     | 3.1  | 70        |
| 26 | Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnology for Biofuels, 2016, 9, 27.                                                                        | 6.2  | 68        |
| 27 | Towards dynamic metabolic network measurements by multi-dimensional NMR-based fluxomics.<br>Phytochemistry, 2007, 68, 2320-2329.                                                                                                              | 2.9  | 64        |
| 28 | Exploring the conformational space of amorphous cellulose using NMR chemical shifts.<br>Carbohydrate Polymers, 2012, 90, 1197-1203.                                                                                                           | 10.2 | 61        |
| 29 | SpinCouple: Development of a Web Tool for Analyzing Metabolite Mixtures via Two-Dimensional <i>J</i> . Resolved NMR Database. Analytical Chemistry, 2016, 88, 659-665.                                                                        | 6.5  | 61        |
| 30 | Top-down Phenomics of Arabidopsis thaliana. Journal of Biological Chemistry, 2007, 282, 18532-18541.                                                                                                                                          | 3.4  | 58        |
| 31 | Redox-Dependent Domain Rearrangement of Protein Disulfide Isomerase Coupled with Exposure of Its<br>Substrate-Binding Hydrophobic Surface. Journal of Molecular Biology, 2010, 396, 361-374.                                                  | 4.2  | 58        |
| 32 | Metabolomic profiling of <sup>13</sup> C-labelled cellulose digestion in a lower termite: insights<br>into gut symbiont function. Proceedings of the Royal Society B: Biological Sciences, 2014, 281,<br>20140990.                            | 2.6  | 58        |
| 33 | Evaluation and Characterization of Bacterial Metabolic Dynamics with a Novel Profiling Technique,<br>Real-Time Metabolotyping. PLoS ONE, 2009, 4, e4893.                                                                                      | 2.5  | 56        |
| 34 | A NMR-based, non-targeted multistep metabolic profiling revealed l-rhamnitol as a metabolite that characterised apples from different geographic origins. Food Chemistry, 2015, 174, 163-172.                                                 | 8.2  | 54        |
|    |                                                                                                                                                                                                                                               |      |           |
| 35 | Comparative metabolomic and ionomic approach for abundant fishes in estuarine environments of<br>Japan. Scientific Reports, 2014, 4, 7005.                                                                                                    | 3.3  | 53        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Comprehensive Signal Assignment of <sup>13</sup> C-Labeled Lignocellulose Using Multidimensional<br>Solution NMR and <sup>13</sup> C Chemical Shift Comparison with Solid-State NMR. Analytical<br>Chemistry, 2013, 85, 8857-8865.         | 6.5 | 48        |
| 38 | Integrated Analysis of Seaweed Components during Seasonal Fluctuation by Data Mining Across<br>Heterogeneous Chemical Measurements with Network Visualization. Analytical Chemistry, 2014, 86,<br>1098-1105.                               | 6.5 | 48        |
| 39 | Identification of Reliable Components in Multivariate Curve Resolution-Alternating Least Squares<br>(MCR-ALS): a Data-Driven Approach across Metabolic Processes. Scientific Reports, 2015, 5, 15710.                                      | 3.3 | 48        |
| 40 | Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality. Food Chemistry, 2015, 169, 387-395.                              | 8.2 | 46        |
| 41 | Effect of dielectric properties of solvents on the quality factor for a beyond 900MHz cryogenic probe model. Journal of Magnetic Resonance, 2005, 174, 34-42.                                                                              | 2.1 | 45        |
| 42 | Practical Aspects of Uniform Stable Isotope Labeling of Higher Plants for Heteronuclear NMR-Based<br>Metabolomics. Methods in Molecular Biology, 2007, 358, 273-286.                                                                       | 0.9 | 45        |
| 43 | Dynamic Omics Approach Identifies Nutrition-Mediated Microbial Interactions. Journal of Proteome<br>Research, 2011, 10, 824-836.                                                                                                           | 3.7 | 45        |
| 44 | Introduction of chemically labile substructures into <i>Arabidopsis</i> lignin through the use of<br>LigD, the Cαâ€dehydrogenase from <i>Sphingobium</i> sp. strain <scp>SYK</scp> â€6. Plant Biotechnology<br>Journal, 2015, 13, 821-832. | 8.3 | 45        |
| 45 | Improvement of physical, chemical and biological properties of aridisol from Botswana by the incorporation of torrefied biomass. Scientific Reports, 2016, 6, 28011.                                                                       | 3.3 | 44        |
| 46 | Application of ensemble deep neural network to metabolomics studies. Analytica Chimica Acta, 2018, 1037, 230-236.                                                                                                                          | 5.4 | 44        |
| 47 | Intestinal microbiota composition is altered according to nutritional biorhythms in the leopard coral grouper (Plectropomus leopardus). PLoS ONE, 2018, 13, e0197256.                                                                      | 2.5 | 44        |
| 48 | Environmental metabolomics with data science for investigating ecosystem homeostasis. Progress in<br>Nuclear Magnetic Resonance Spectroscopy, 2018, 104, 56-88.                                                                            | 7.5 | 43        |
| 49 | Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose. Scientific Reports, 2015, 5, 11848.                                                     | 3.3 | 42        |
| 50 | Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches. PeerJ, 2014, 2, e550.                                                       | 2.0 | 42        |
| 51 | Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice. PLoS ONE, 2017, 12, e0182229.                                                    | 2.5 | 41        |
| 52 | Solution Structure of the DFF-C Domain of DFF45/ICAD. A Structural Basis for the Regulation of Apoptotic DNA Fragmentation. Journal of Molecular Biology, 2002, 321, 317-327.                                                              | 4.2 | 40        |
| 53 | Characterization of lignocellulose of Erianthus arundinaceus in relation to enzymatic saccharification efficiency. Plant Biotechnology, 2013, 30, 25-35.                                                                                   | 1.0 | 40        |
| 54 | Chemical profiling of complex biochemical mixtures from various seaweeds. Polymer Journal, 2012, 44, 888-894.                                                                                                                              | 2.7 | 39        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Comparative Analysis of Chemical and Microbial Profiles in Estuarine Sediments Sampled from Kanto<br>and Tohoku Regions in Japan. Analytical Chemistry, 2014, 86, 5425-5432.                                            | 6.5 | 39        |
| 56 | Pretreatment and Integrated Analysis of Spectral Data Reveal Seaweed Similarities Based on Chemical<br>Diversity. Analytical Chemistry, 2015, 87, 2819-2826.                                                            | 6.5 | 39        |
| 57 | New monitoring approach for metabolic dynamics in microbial ecosystems using<br>stable-isotope-labeling technologies. Journal of Bioscience and Bioengineering, 2010, 110, 87-93.                                       | 2.2 | 38        |
| 58 | <i><scp>TBL</scp>10</i> is required for <i>O</i> â€acetylation of pectic rhamnogalacturonanâ€i in<br><i>Arabidopsis thaliana</i> . Plant Journal, 2018, 96, 772-785.                                                    | 5.7 | 37        |
| 59 | Metabolic Sequences of Anaerobic Fermentation on Glucose-Based Feeding Substrates Based on<br>Correlation Analyses of Microbial and Metabolite Profiling. Journal of Proteome Research, 2012, 11,<br>5602-5610.         | 3.7 | 36        |
| 60 | Statistical approach for solid-state NMR spectra of cellulose derived from a series of variable parameters. Polymer Journal, 2012, 44, 895-900.                                                                         | 2.7 | 35        |
| 61 | Solubilization Mechanism and Characterization of the Structural Change of Bacterial Cellulose in Regenerated States through Ionic Liquid Treatment. Biomacromolecules, 2012, 13, 1323-1330.                             | 5.4 | 34        |
| 62 | Solid-, Solution-, and Gas-state NMR Monitoring of 13C-Cellulose Degradation in an Anaerobic<br>Microbial Ecosystem. Molecules, 2013, 18, 9021-9033.                                                                    | 3.8 | 34        |
| 63 | In vitro evaluation method for screening of candidate prebiotic foods. Food Chemistry, 2014, 152, 251-260.                                                                                                              | 8.2 | 34        |
| 64 | Application of kernel principal component analysis and computational machine learning to exploration of metabolites strongly associated with diet. Scientific Reports, 2018, 8, 3426.                                   | 3.3 | 33        |
| 65 | Cholesterol Doping Induced Enhanced Stability of Bicelles. Langmuir, 2003, 19, 9841-9844.                                                                                                                               | 3.5 | 32        |
| 66 | Oral Pathobiont-Induced Changes in Gut Microbiota Aggravate the Pathology of Nonalcoholic Fatty<br>Liver Disease in Mice. Frontiers in Immunology, 2021, 12, 766170.                                                    | 4.8 | 32        |
| 67 | ECOMICS: A Web-Based Toolkit for Investigating the Biomolecular Web in Ecosystems Using a Trans-omics Approach. PLoS ONE, 2012, 7, e30263.                                                                              | 2.5 | 31        |
| 68 | Selective Signal Detection in Solid-State NMR Using Rotor-Synchronized Dipolar Dephasing for the<br>Analysis of Hemicellulose in Lignocellulosic Biomass. Journal of Physical Chemistry Letters, 2013, 4,<br>2279-2283. | 4.6 | 31        |
| 69 | Application of 1H NMR chemical shifts to measure the quality of protein structures. Journal of<br>Molecular Biology, 1995, 247, 541-546.                                                                                | 4.2 | 30        |
| 70 | Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect<br>Biomass Metabolism by Paddy Soil Microbiota. PLoS ONE, 2013, 8, e66919.                                              | 2.5 | 30        |
| 71 | Human Metabolic, Mineral, and Microbiota Fluctuations Across Daily Nutritional Intake Visualized by<br>a Data-Driven Approach. Journal of Proteome Research, 2015, 14, 1526-1534.                                       | 3.7 | 28        |
| 72 | Application of Market Basket Analysis for the Visualization of Transaction Data Based on Human<br>Lifestyle and Spectroscopic Measurements. Analytical Chemistry, 2016, 88, 2714-2719.                                  | 6.5 | 28        |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | NMR-Based Metabolic Profiling of Field-Grown Leaves from Sugar Beet Plants Harbouring Different<br>Levels of Resistance to Cercospora Leaf Spot Disease. Metabolites, 2017, 7, 4.                                                           | 2.9  | 28        |
| 74 | Impact of abiotic stress on the regulation of cell wall biosynthesis in <i>Populus<br/>trichocarpa</i> . Plant Biotechnology, 2020, 37, 273-283.                                                                                            | 1.0  | 27        |
| 75 | Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid<br>Pretreatment as Studied by Solution-State 2D 1H-13C NMR. PLoS ONE, 2015, 10, e0128417.                                               | 2.5  | 26        |
| 76 | Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent. PLoS ONE, 2017, 12,<br>e0189726.                                                                                                                          | 2.5  | 25        |
| 77 | Structure and Metabolicâ€Flow Analysis of Molecular Complexity in a <sup>13</sup> C‣abeled Tree by 2D<br>and 3D NMR. Angewandte Chemie - International Edition, 2016, 55, 6000-6003.                                                        | 13.8 | 24        |
| 78 | Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0. Scientific Reports, 2016, 6, 26515.                                                                                     | 3.3  | 24        |
| 79 | Toward the complete utilization of rice straw: Methane fermentation and lignin recovery by a combinational process involving mechanical milling, supporting material and nanofiltration. Bioresource Technology, 2016, 216, 830-837.        | 9.6  | 24        |
| 80 | Transcriptome Analysis Uncovers a Growth-Promoting Activity of Orosomucoid-1 on Hepatocytes.<br>EBioMedicine, 2017, 24, 257-266.                                                                                                            | 6.1  | 24        |
| 81 | Trans-omics approaches used to characterise fish nutritional biorhythms in leopard coral grouper<br>(Plectropomus leopardus). Scientific Reports, 2017, 7, 9372.                                                                            | 3.3  | 24        |
| 82 | Application of Two-Dimensional Nuclear Magnetic Resonance for Signal Enhancement by Spectral<br>Integration Using a Large Data Set of Metabolic Mixtures. Analytical Chemistry, 2016, 88, 6130-6134.                                        | 6.5  | 23        |
| 83 | Systemic Homeostasis in Metabolome, Ionome, and Microbiome of Wild Yellowfin Goby in Estuarine<br>Ecosystem. Scientific Reports, 2018, 8, 3478.                                                                                             | 3.3  | 23        |
| 84 | NMR-TS: de novo molecule identification from NMR spectra. Science and Technology of Advanced<br>Materials, 2020, 21, 552-561.                                                                                                               | 6.1  | 23        |
| 85 | Chemical Profiling of Jatropha Tissues under Different Torrefaction Conditions: Application to<br>Biomass Waste Recovery. PLoS ONE, 2014, 9, e106893.                                                                                       | 2.5  | 23        |
| 86 | Biogeochemical Typing of Paddy Field by a Data-Driven Approach Revealing Sub-Systems within a<br>Complex Environment - A Pipeline to Filtrate, Organize and Frame Massive Dataset from Multi-Omics<br>Analyses. PLoS ONE, 2014, 9, e110723. | 2.5  | 22        |
| 87 | A survey of metabolic changes in potato leaves by NMRâ€based metabolic profiling in relation to<br>resistance to late blight disease under field conditions. Magnetic Resonance in Chemistry, 2017, 55,<br>120-127.                         | 1.9  | 22        |
| 88 | Cellulose Digestion and Metabolism Induced Biocatalytic Transitions in Anaerobic Microbial<br>Ecosystems. Metabolites, 2014, 4, 36-52.                                                                                                      | 2.9  | 21        |
| 89 | Profiling Planktonic Biomass Using Element-Specific, Multicomponent Nuclear Magnetic Resonance<br>Spectroscopy. Environmental Science & Technology, 2015, 49, 7056-7062.                                                                    | 10.0 | 21        |
| 90 | Fragment Assembly Approach Based on Graph/Network Theory with Quantum Chemistry Verifications<br>for Assigning Multidimensional NMR Signals in Metabolite Mixtures. ACS Chemical Biology, 2016, 11,<br>1030-1038.                           | 3.4  | 21        |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | SENSI: signal enhancement by spectral integration for the analysis of metabolic mixtures. Chemical Communications, 2016, 52, 2964-2967.                                                                                                 | 4.1 | 21        |
| 92  | Hydrophilic Double-Network Polymers that Sustain High Mechanical Modulus under 80% Humidity.<br>ACS Macro Letters, 2012, 1, 432-436.                                                                                                    | 4.8 | 20        |
| 93  | Multi-Spectroscopic Analysis of Seed Quality and 13C-Stable-lotopologue Monitoring in Initial Growth<br>Metabolism of Jatropha curcas L Metabolites, 2014, 4, 1018-1033.                                                                | 2.9 | 20        |
| 94  | Precipitate obtained following membrane separation of hydrothermally pretreated rice straw liquid revealed by 2D NMR to have high lignin content. Biotechnology for Biofuels, 2015, 8, 88.                                              | 6.2 | 20        |
| 95  | NMR window of molecular complexity showing homeostasis in superorganisms. Analyst, The, 2017, 142, 4161-4172.                                                                                                                           | 3.5 | 20        |
| 96  | Exploratory machine-learned theoretical chemical shifts can closely predict metabolic mixture signals. Chemical Science, 2018, 9, 8213-8220.                                                                                            | 7.4 | 20        |
| 97  | Deep phenotyping of myalgic encephalomyelitis/chronic fatigue syndrome in Japanese population.<br>Scientific Reports, 2020, 10, 19933.                                                                                                  | 3.3 | 20        |
| 98  | Solubility Prediction from Molecular Properties and Analytical Data Using an In-phase Deep Neural<br>Network (Ip-DNN). ACS Omega, 2021, 6, 14278-14287.                                                                                 | 3.5 | 20        |
| 99  | InterSpin: Integrated Supportive Webtools for Low- and High-Field NMR Analyses Toward Molecular<br>Complexity. ACS Omega, 2019, 4, 3361-3369.                                                                                           | 3.5 | 19        |
| 100 | Molecular diet analysis of Anguilliformes leptocephalus larvae collected in the western North<br>Pacific. PLoS ONE, 2019, 14, e0225610.                                                                                                 | 2.5 | 19        |
| 101 | A light-harvesting antenna protein retains its folded conformation in the absence of protein-lipid and protein-pigment interactions. , 1999, 49, 361-372.                                                                               |     | 18        |
| 102 | Present Status of 920 MHz High-Resolution NMR Spectrometers. IEEE Transactions on Applied<br>Superconductivity, 2004, 14, 1608-1612.                                                                                                    | 1.7 | 18        |
| 103 | A unique unnatural base pair between a C analogue, pseudoisocytosine, and an A analogue,<br>6-methoxypurine, in replication. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1391-1393.                                           | 2.2 | 17        |
| 104 | Solution structure determination of the two DNA-binding domains in the Schizosaccharomyces pombe Abp1 protein by a combination of dipolar coupling and diffusion anisotropy restraints. Journal of Biomolecular NMR, 2002, 22, 333-347. | 2.8 | 17        |
| 105 | Dietary intervention of mice using an improved Multiple Artificial-gravity Research System (MARS)<br>under artificial 1 g. Npj Microgravity, 2019, 5, 16.                                                                               | 3.7 | 16        |
| 106 | Metabolic movement upon abscisic acid and salicylic acid combined treatments. Plant Biotechnology, 2009, 26, 551-560.                                                                                                                   | 1.0 | 16        |
| 107 | Spectroscopic investigation of tissue-specific biomass profiling for Jatropha curcas L Plant<br>Biotechnology, 2012, 29, 163-170.                                                                                                       | 1.0 | 15        |
| 108 | Modification of plant cell wall structure accompanied by enhancement of saccharification efficiency using a chemical, lasalocid sodium. Scientific Reports, 2016, 6, 34602.                                                             | 3.3 | 15        |

| #   | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Exploring the Impact of Food on the Gut Ecosystem Based on the Combination of Machine Learning and Network Visualization. Nutrients, 2017, 9, 1307.                                                                                                 | 4.1  | 15        |
| 110 | Screening of fungi for decomposition of lignin-derived products from Japanese cedar. Journal of Bioscience and Bioengineering, 2018, 126, 573-579.                                                                                                  | 2.2  | 15        |
| 111 | Spectroscopic investigation of tertiary fold of staphylococcal protein A to explore its engineering application. Biomaterials, 1999, 20, 647-654.                                                                                                   | 11.4 | 14        |
| 112 | Metabolic dynamics analysis by massive data integration: application to tsunami-affected field soils in<br>Japan. ACS Chemical Biology, 2015, 10, 1908-1915.                                                                                        | 3.4  | 14        |
| 113 | A potential network structure of symbiotic bacteria involved in carbon and nitrogen metabolism of wood-utilizing insect larvae. Science of the Total Environment, 2022, 836, 155520.                                                                | 8.0  | 14        |
| 114 | Structure and dynamics of photosynthetic membrane-bound proteins in Rhodobacter Sphaeroides, studied with solid-state NMR spectroscopy. Photosynthesis Research, 2000, 63, 259-267.                                                                 | 2.9  | 13        |
| 115 | Visualization of Microfloral Metabolism for Marine Waste Recycling. Metabolites, 2016, 6, 7.                                                                                                                                                        | 2.9  | 13        |
| 116 | Use of 13C conformation-dependent chemical shifts to elucidate the local structure of a large protein with homologous domains in solution and solid state. Journal of Proteomics, 1999, 38, 203-208.                                                | 2.4  | 12        |
| 117 | Signal Deconvolution and Noise Factor Analysis Based on a Combination of Time–Frequency Analysis<br>and Probabilistic Sparse Matrix Factorization. International Journal of Molecular Sciences, 2020, 21,<br>2978.                                  | 4.1  | 12        |
| 118 | An advantage for use of isotope labeling and NMR chemical shifts to analyze the structure of four<br>homologous IgG-binding domains of staphylococcal protein A. Journal of Proteomics, 2000, 42, 35-47.                                            | 2.4  | 11        |
| 119 | The Effect of Molecular Conformation on the Accuracy of Theoretical <sup>1</sup> H and<br><sup>13</sup> C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.<br>Journal of Physical Chemistry B, 2016, 120, 3479-3487. | 2.6  | 11        |
| 120 | Mobile edge computing based VM migration for QoS improvement. , 2017, , .                                                                                                                                                                           |      | 11        |
| 121 | Bacterial Substrate Transformation Tracked by Stable-Isotope-Guided NMR Metabolomics: Application in a Natural Aquatic Microbial Community. Metabolites, 2017, 7, 52.                                                                               | 2.9  | 11        |
| 122 | Regional feature extraction of various fishes based on chemical and microbial variable selection using machine learning. Analytical Methods, 2018, 10, 2160-2168.                                                                                   | 2.7  | 11        |
| 123 | Decomposition Factor Analysis Based on Virtual Experiments throughout Bayesian Optimization for Compost-Degradable Polymers. Applied Sciences (Switzerland), 2021, 11, 2820.                                                                        | 2.5  | 11        |
| 124 | Concentration of Metabolites from Low-density Planktonic Communities for Environmental<br>Metabolomics using Nuclear Magnetic Resonance Spectroscopy. Journal of Visualized Experiments,<br>2012, , e3163.                                          | 0.3  | 10        |
| 125 | Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae—A 2D NMR<br>Metabolomics Study. International Journal of Molecular Sciences, 2016, 17, 1470.                                                                            | 4.1  | 10        |
| 126 | The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science. RSC Advances, 2021, 11, 30426-30447.                                                                         | 3.6  | 10        |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Fish ecotyping based on machine learning and inferred network analysis of chemical and physical properties. Scientific Reports, 2021, 11, 3766.                                                                                             | 3.3 | 10        |
| 128 | Improved Prediction of Carbonless NMR Spectra by the Machine Learning of Theoretical and Fragment Descriptors for Environmental Mixture Analysis. Analytical Chemistry, 2021, 93, 6901-6906.                                                | 6.5 | 10        |
| 129 | Development of KaPPA-View4 for omics studies on Jatropha and a database system KaPPA-Loader for construction of local omics databases. Plant Biotechnology, 2012, 29, 131-135.                                                              | 1.0 | 9         |
| 130 | FoodPro: A Web-Based Tool for Evaluating Covariance and Correlation NMR Spectra Associated with Food Processes. Metabolites, 2016, 6, 36.                                                                                                   | 2.9 | 9         |
| 131 | Profiling physicochemical and planktonic features from discretely/continuously sampled surface water. Science of the Total Environment, 2018, 636, 12-19.                                                                                   | 8.0 | 9         |
| 132 | Large-Scale Evaluation of Major Soluble Macromolecular Components of Fish Muscle from a<br>Conventional 1H-NMR Spectral Database. Molecules, 2020, 25, 1966.                                                                                | 3.8 | 9         |
| 133 | Signal Deconvolution and Generative Topographic Mapping Regression for Solid-State NMR of Multi-Component Materials. International Journal of Molecular Sciences, 2021, 22, 1086.                                                           | 4.1 | 8         |
| 134 | Functional Analysis of Poplar Sombrero-Type NAC Transcription Factors Yields a Strategy to Modify<br>Woody Cell Wall Properties. Plant and Cell Physiology, 2021, 62, 1963-1974.                                                            | 3.1 | 8         |
| 135 | Visualizing microbial dechlorination processes in underground ecosystem by statistical correlation and network analysis approach. Journal of Bioscience and Bioengineering, 2014, 117, 305-309.                                             | 2.2 | 7         |
| 136 | Materials informatics approach using domain modelling for exploring structure–property<br>relationships of polymers. Scientific Reports, 2022, 12, .                                                                                        | 3.3 | 7         |
| 137 | Thermal Analyses of Phospholipid Mixtures by Differential Scanning Calorimetry and Effect of Doping with a Bolaform Amphiphile. Bulletin of the Chemical Society of Japan, 2007, 80, 1208-1216.                                             | 3.2 | 6         |
| 138 | 18S rRNA gene sequences of leptocephalus gut contents, particulate organic matter, and biological oceanographic conditions in the western North Pacific. Scientific Reports, 2021, 11, 5488.                                                | 3.3 | 6         |
| 139 | Enhancement of Secondary Cell Wall Formation in Poplar Xylem Using a Self-Reinforced System of<br>Secondary Cell Wall-Related Transcription Factors. Frontiers in Plant Science, 2022, 13, 819360.                                          | 3.6 | 6         |
| 140 | Noninvasive fecal metabolic profiling for the evaluation of characteristics of thermostable lactic<br>acid bacteria, Weizmannia coagulans SANK70258, forÂbroilerÂchickens. Journal of Bioscience and<br>Bioengineering, 2022, 134, 105-115. | 2.2 | 6         |
| 141 | Ethanol induces heat tolerance in plants by stimulating unfolded protein response. Plant Molecular<br>Biology, 2022, 110, 131-145.                                                                                                          | 3.9 | 6         |
| 142 | Structure Analysis of Proteins by a Combination of Distance Geometry Calculation and 1H NMR<br>Chemical Shift Calculation Kobunshi Ronbunshu, 1994, 51, 409-413.                                                                            | 0.2 | 5         |
| 143 | Structure and Metabolicâ€Flow Analysis of Molecular Complexity in a <sup>13</sup> C‣abeled Tree by 2D<br>and 3D NMR. Angewandte Chemie, 2016, 128, 6104-6107.                                                                               | 2.0 | 5         |
| 144 | Dynamics induced by environmental stochasticity in a phytoplankton-zooplankton system with toxic phytoplankton. Mathematical Biosciences and Engineering, 2021, 18, 4101-4126.                                                              | 1.9 | 5         |

| #   | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Hetero-nuclear NMR-based Metabolomics. , 2006, , 93-101.                                                                                                                                                                                                                               |     | 5         |
| 146 | 4.5 K Cooling System for a Cryogenically Cooled Probe for a 920 MHz NMR. AIP Conference<br>Proceedings, 2004, , .                                                                                                                                                                      | 0.4 | 4         |
| 147 | Spatial molecular-dynamically ordered NMR spectroscopy of intact bodies and heterogeneous systems. Communications Chemistry, 2020, 3, .                                                                                                                                                | 4.5 | 4         |
| 148 | Relaxometric learning: a pattern recognition method for T2 relaxation curves based on machine learning supported by an analytical framework. BMC Chemistry, 2021, 15, 13.                                                                                                              | 3.8 | 4         |
| 149 | Chemometric Analysis of NMR Spectra and Machine Learning to Investigate Membrane Fouling. ACS Omega, 2022, 7, 12654-12660.                                                                                                                                                             | 3.5 | 4         |
| 150 | Integrative measurement analysis via machine learning descriptor selection for investigating physical properties of biopolymers in hairs. Scientific Reports, 2021, 11, 24359.                                                                                                         | 3.3 | 4         |
| 151 | Identifying a Correlation among Qualitative Non-Numeric Parameters in Natural Fish Microbe Dataset<br>Using Machine Learning. Applied Sciences (Switzerland), 2022, 12, 5927.                                                                                                          | 2.5 | 4         |
| 152 | Dynamics of a stochastic non-autonomous phytoplankton–zooplankton system involving<br>toxin-producing phytoplankton and impulsive perturbations. Mathematics and Computers in<br>Simulation, 2023, 203, 368-386.                                                                       | 4.4 | 4         |
| 153 | Conformations of Synthetic Model Peptides for Plasmodium falciparum Circumsporozoite Protein in Me2SO by 1H NMR and Distance Geometry Calculations. Polymer Journal, 1995, 27, 347-360.                                                                                                | 2.7 | 2         |
| 154 | Structural and Functional Characterization of a Mutant of Pseudocerastes persicus Natriuretic Peptide. Protein and Peptide Letters, 2006, 13, 295-300.                                                                                                                                 | 0.9 | 2         |
| 155 | Differences in glucose yield of residues from among varieties of rice, wheat, and sorghum after dilute acid pretreatment. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1650-1656.                                                                                             | 1.3 | 2         |
| 156 | [Dedicated to Prof. T. Okada and Prof. T. Nishioka: data science in chemistry]Visualizing Individual and<br>Region-specific Microbial–metabolite Relations by Important Variable Selection Using Machine<br>Learning Approaches. Journal of Computer Aided Chemistry, 2017, 18, 31-41. | 0.3 | 2         |
| 157 | CHAPTER 17. Polysaccharides as Major Carbon Sources in Environmental Biodiversity. New Developments in NMR, 0, , 369-395.                                                                                                                                                              | 0.1 | 2         |
| 158 | ECOMICS:Ecosystem Trans-OMICS Tools and Methods for Complex Environmental Samples and Datasets. Journal of Ecosystem & Ecography, 2013, 03, .                                                                                                                                          | 0.2 | 2         |
| 159 | NMR Analysis of Molecular Complexity. , 2018, , 461-489.                                                                                                                                                                                                                               |     | 1         |
| 160 | Practical Aspects of the Analysis of Low- and High-Field NMR Data from Environmental Samples.<br>Methods in Molecular Biology, 2019, 2037, 315-331.                                                                                                                                    | 0.9 | 1         |
| 161 | Parameter Visualization of Benchtop Nuclear Magnetic Resonance Spectra toward Food Process<br>Monitoring. Processes, 2022, 10, 1264.                                                                                                                                                   | 2.8 | 1         |
| 162 | New Aquaculture Technology Based on Host-Symbiotic Co-metabolism. , 2019, , 189-228.                                                                                                                                                                                                   |     | 0         |

| #   | Article                                                                                                                            | IF | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 163 | Gut Microbe Transformation of Natural Products: Plant Polysaccharides Are Metabolized by Animal Symbionts. , 2020, , 519-528.      |    | 0         |
| 164 | Practical Aspects of Uniform Stable Isotope Labeling of Higher Plants for Heteronuclear NMR-Based<br>Metabolomics. , 0, , 273-286. |    | 0         |