Yu-suke Torisawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5654326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multicellular modeling of ciliopathy by combining iPS cells and microfluidic airway-on-a-chip technology. Science Translational Medicine, 2021, 13, .	5.8	36
2	Usability of Polydimethylsiloxane-Based Microfluidic Devices in Pharmaceutical Research Using Human Hepatocytes. ACS Biomaterials Science and Engineering, 2021, 7, 3648-3657.	2.6	23
3	Generation of Tetrafluoroethylene–Propylene Elastomer-Based Microfluidic Devices for Drug Toxicity and Metabolism Studies. ACS Omega, 2021, 6, 24859-24865.	1.6	6
4	Biomimetic aorta-gonad-mesonephros-on-a-chip to study human developmental hematopoiesis. Biomedical Microdevices, 2020, 22, 34.	1.4	6
5	Editorial for the Special Issue on Organs-on-Chips. Micromachines, 2020, 11, 369.	1.4	4
6	Microfluidic Organs-on-Chips to Reconstitute Cellular Microenvironments. Bioanalysis, 2019, , 227-246.	0.1	0
7	Developing thymus-on-a-chip and cancer-on-a-chip for cancer immunotherapy. Impact, 2019, 2019, 33-35.	0.0	0
8	Tetrafluoroethylene-Propylene Elastomer for Fabrication of Microfluidic Organs-on-Chips Resistant to Drug Absorption. Micromachines, 2019, 10, 793.	1.4	42
9	Effects of age-dependent changes in cell size on endothelial cell proliferation and senescence through YAP1. Aging, 2019, 11, 7051-7069.	1.4	20
10	Engineering of vascular networks using microfluidic devices for organ-on-a-chip microsystems. Drug Delivery System, 2019, 34, 268-277.	0.0	0
11	Engineering of vascularized 3D cell constructs to model cellular interactions through a vascular network. Biomicrofluidics, 2018, 12, 042204.	1.2	42
12	On-Chip Vasculature Angiogenesis by Detecting Shear Stress. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2018, 2018.30, 1H14.	0.0	0
13	Engineering a three-dimensional tissue model with a perfusable vasculature in a microfluidic device. , 2017, , .		0
14	Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integrative Biology (United Kingdom), 2017, 9, 506-518.	0.6	188
15	Development of three-dimensional tumor model with a perfusable vasculature using a microfluidic device. Mechanisms of Development, 2017, 145, S34.	1.7	0
16	Modeling Hematopoiesis and Responses to Radiation Countermeasures in a Bone Marrow-on-a-Chip. Tissue Engineering - Part C: Methods, 2016, 22, 509-515.	1.1	53
17	Engineered In Vitro Disease Models. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 195-262.	9.6	442
18	Biomechanical forces promote blood development through prostaglandin E2 and the cAMP–PKA signaling axis. Journal of Experimental Medicine, 2015, 212, 665-680.	4.2	74

Yu-suke Torisawa

#	Article	IF	CITATIONS
19	Biomechanical forces promote blood development through prostaglandin E ₂ and the cAMP–PKA signaling axis. Journal of General Physiology, 2015, 145, 1455OIA20.	0.9	0
20	Biomechanical forces promote blood development through prostaglandin E2and the cAMP–PKA signaling axis. Journal of Cell Biology, 2015, 209, 2092OIA69.	2.3	0
21	Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro. Nature Methods, 2014, 11, 663-669.	9.0	369
22	Microengineered physiological biomimicry: Organs-on-Chips. Lab on A Chip, 2012, 12, 2156.	3.1	584
23	High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst, The, 2011, 136, 473-478.	1.7	805
24	Mechanochemical Control of Mesenchymal Condensation and Embryonic Tooth Organ Formation. Developmental Cell, 2011, 21, 758-769.	3.1	175
25	Transwells with Microstamped Membranes Produce Micropatterned Two-Dimensional and Three-Dimensional Co-Cultures. Tissue Engineering - Part C: Methods, 2011, 17, 61-67.	1.1	18
26	Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device. Biomedical Microdevices, 2010, 12, 145-151.	1.4	72
27	Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices. Nature Physics, 2010, 6, 433-437.	6.5	229
28	Uniform cell seeding and generation of overlapping gradient profiles in a multiplexed microchamber device with normally-closed valves. Lab on A Chip, 2010, 10, 2959.	3.1	30
29	Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications. Lab on A Chip, 2010, 10, 1983.	3.1	11
30	Microfluidic platform for chemotaxis in gradients formed by CXCL12 source-sink cells. Integrative Biology (United Kingdom), 2010, 2, 680.	0.6	76
31	Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials, 2009, 30, 3020-3027.	5.7	274
32	A microfluidic dual capillary probe to collect messenger RNA from adherent cells and spheroids. Analytical Biochemistry, 2009, 385, 138-142.	1.1	35
33	Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integrative Biology (United Kingdom), 2009, 1, 649.	0.6	105
34	Microfluidic culture of single human embryonic stem cell colonies. Lab on A Chip, 2009, 9, 1749.	3.1	85
35	Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics. Lab on A Chip, 2007, 7, 1497.	3.1	38
36	Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab on A Chip, 2007, 7, 770.	3.1	139

Yu-suke Torisawa

#	Article	IF	CITATIONS
37	Measurement of Gene Expression from Single Adherent Cells and Spheroids Collected Using Fast Electrical Lysis. Analytical Chemistry, 2007, 79, 6823-6830.	3.2	38
38	Regulation and characterization of the polarity of cells embedded in a reconstructed basement matrix using a three-dimensional micro-culture system. Biotechnology and Bioengineering, 2007, 97, 615-621.	1.7	8
39	A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip. Biomaterials, 2007, 28, 559-566.	5.7	159
40	Electrochemical Monitoring of Cellular Signal Transduction with a Secreted Alkaline Phosphatase Reporter System. Analytical Chemistry, 2006, 78, 7625-7631.	3.2	51
41	Cytokine assay on a cellular chip by combining collagen gel embedded culture with scanning electrochemical microscopy. Analytica Chimica Acta, 2006, 566, 55-59.	2.6	19
42	Three-dimensional micro-culture system with a silicon-based cell array device for multi-channel drug sensitivity test. Sensors and Actuators B: Chemical, 2005, 108, 654-659.	4.0	28
43	Metabolic and enzymatic activities of individual cells, spheroids and embryos as a function of the sample size. Sensors and Actuators B: Chemical, 2005, 108, 597-602.	4.0	32
44	Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test. Biomaterials, 2005, 26, 2165-2172.	5.7	121
45	Real-time monitoring of reactive oxygen species production during differentiation of human monocytic cell lines (THP-1). Analytica Chimica Acta, 2005, 549, 14-19.	2.6	33
46	A multicellular spheroid-based drug sensitivity test by scanning electrochemical microscopy. Oncology Reports, 2005, 13, 1107.	1.2	15
47	On-Chip Transformation of Bacteria. Analytical Chemistry, 2005, 77, 4278-4281.	3.2	29
48	A multicellular spheroid-based drug sensitivity test by scanning electrochemical microscopy. Oncology Reports, 2005, 13, 1107-12.	1.2	40
49	Proliferation assay on a silicon chip applicable for tumors extirpated from mammalians. International Journal of Cancer, 2004, 109, 302-308.	2.3	36
50	Bioassay using living cells integrated on a chip. Bunseki Kagaku, 2004, 53, 367-382.	0.1	5
51	Scanning Electrochemical Microscopy-Based Drug Sensitivity Test for a Cell Culture Integrated in Silicon Microstructures. Analytical Chemistry, 2003, 75, 2154-2158.	3.2	99
52	Monitoring the cellular activity of a cultured single cell by scanning electrochemical microscopy (SECM). A comparison with fluorescence viability monitoring. Biosensors and Bioelectronics, 2003, 18, 1379-1383.	5.3	84
53	Engineering bone marrow-on-a-chip. Microphysiological Systems, 0, 3, 2-2.	2.0	1