
Paola Lavermicocca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5653980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>>Weissella cibaria</i> shortâ€fermented liquid sourdoughs based on quinoa or amaranth flours as fat replacer in focaccia bread formulation. International Journal of Food Science and Technology, 2021, 56, 3197-3208.	1.3	14
2	Metagenetic Analysis for Microbial Characterization of Focaccia Doughs Obtained by Using Two Different Starters: Traditional Baker's Yeast and a Selected Leuconostoc citreum Strain. Foods, 2021, 10, 1189.	1.9	4
3	Probiotic bacteria and plant-based matrices: An association with improved health-promoting features. Journal of Functional Foods, 2021, 87, 104821.	1.6	11
4	Thermoplastic starch and bioactive chitosan sub-microparticle biocomposites: Antifungal and chemico-physical properties of the films. Carbohydrate Polymers, 2020, 230, 115627.	5.1	32
5	The viability of probiotic Lactobacillus paracasei IMPC2.1 coating on apple slices during dehydration and simulated gastro-intestinal digestion. Food Bioscience, 2020, 34, 100533.	2.0	20
6	Microbiological and physicochemical parameters for predicting quality of fat and lowâ€fat raw ground beef during refrigerated aerobic storage. Journal of Food Science, 2020, 85, 465-476.	1.5	8
7	α-costic acid, a plant sesquiterpenoid from Dittrichia viscosa, as modifier of Poly (lactic acid) properties: a novel exploitation of the autochthone biomass metabolite for a wholly biodegradable system. Industrial Crops and Products, 2020, 146, 112134.	2.5	18
8	Effect of Amaranth and Quinoa Flours on Exopolysaccharide Production and Protein Profile of Liquid Sourdough Fermented by Weissella cibaria and Lactobacillus plantarum. Frontiers in Microbiology, 2020, 11, 967.	1.5	18
9	Quality of readyâ€ŧoâ€eat swordfish fillets inoculated with Lactobacillus paracasei IMPCÂ2.1. Journal of the Science of Food and Agriculture, 2019, 99, 199-209.	1.7	1
10	Lactobacillus plantarum ITM21B fermentation product and chickpea flour enhance the nutritional profile of salt reduced bakery products. International Journal of Food Sciences and Nutrition, 2019, 70, 701-713.	1.3	9
11	Use of a Selected Leuconostoc Citreum Strain as a Starter for Making a "Yeast-Free―Bread. Foods, 2019, 8, 70.	1.9	13
12	Effect of artichoke fermentation by probiotic strain Lactobacillus paracasei LMG P-22043 and of digestion process on polyphenols and antioxidant activity. Journal of Functional Foods, 2018, 45, 523-529.	1.6	8
13	Effect of pH and TPP concentration on chemico-physical properties, release kinetics and antifungal activity of Chitosan-TPP-Ungeremine microbeads. Carbohydrate Polymers, 2018, 195, 631-641.	5.1	55
14	Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits. Food Chemistry, 2018, 258, 104-110.	4.2	40
15	Antimould microbial and plant metabolites with potential use in intelligent food packaging. Natural Product Research, 2018, 32, 1605-1610.	1.0	21
16	Lactobacillus plantarum 5BG Survives During Refrigerated Storage Bio-Preserving Packaged Spanish-Style Table Olives (cv. Bella di Cerignola). Frontiers in Microbiology, 2018, 9, 889.	1.5	7
17	Formulation of yeast-leavened bread with reduced salt content by using a Lactobacillus plantarum fermentation product. Food Chemistry, 2017, 221, 582-589.	4.2	26
18	Chemico-physical and antifungal properties of poly(butylene succinate)/cavoxin blend: Study of a novel bioactive polymeric based system. European Polymer Journal, 2017, 94, 230-247.	2.6	33

PAOLA LAVERMICOCCA

#	Article	IF	CITATIONS
19	Effect of Lactobacillus paracasei Culture Filtrates and Artichoke Polyphenols on Cytokine Production by Dendritic Cells. Nutrients, 2016, 8, 635.	1.7	16
20	The potential of spectral and hyperspectral-imaging techniques for bacterial detection in food: A case study on lactic acid bacteria. Talanta, 2016, 153, 111-119.	2.9	37
21	Sporeforming bacteria associated with bread production. , 2016, , 275-293.		7
22	Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid. International Journal of Food Microbiology, 2016, 222, 1-7.	2.1	52
23	Toxigenic potential and heat survival of spore-forming bacteria isolated from bread and ingredients. International Journal of Food Microbiology, 2015, 197, 30-39.	2.1	25
24	Probiotic Lactobacillus paracasei IMPC 2.1 strain delivered by ready-to-eat swordfish fillets colonizes the human gut after alternate-day supplementation. Journal of Functional Foods, 2015, 17, 468-475.	1.6	8
25	Comparison of three Bacillus amyloliquefaciens strains growth behaviour and evaluation of the spoilage risk during bread shelf-life. Food Microbiology, 2015, 45, 2-9.	2.1	24
26	Lactobacillus brevis-based bioingredient inhibits Aspergillus niger growth on pan bread. Italian Journal of Agronomy, 2014, 9, 146.	0.4	11
27	Effect of Lactobacillus brevis-based bioingredient and bran on microbiological, physico-chemical and textural quality of yeast-leavened bread during storage. Innovative Food Science and Emerging Technologies, 2014, 25, 2-8.	2.7	19
28	Glucosinolate content of blanched cabbage (Brassica oleracea var. capitata) fermented by the probiotic strain Lactobacillus paracasei LMG-P22043. Food Research International, 2013, 54, 706-710.	2.9	31
29	Bioprotection of Readyâ€ŧoâ€eat Probiotic Artichokes Processed with <i>Lactobacillus paracasei</i> LMGP22043 against Foodborne Pathogens. Journal of Food Science, 2013, 78, M1757-63.	1.5	12
30	Antiproliferative and Proapoptotic Effects of Viable or Heat-Killed <i>Lactobacillus paracasei</i> IMPC2.1 and <i>Lactobacillus rhamnosus</i> GG in HGC-27 Gastric and DLD-1 Colon Cell Lines. Nutrition and Cancer, 2012, 64, 1103-1111.	0.9	126
31	Suitability of a probiotic Lactobacillus paracasei strain as a starter culture in olive fermentation and development of the innovative patented product "probiotic table olives― Frontiers in Microbiology, 2012, 3, 174.	1.5	27
32	Randomised clinical trial: efficacy of <i>Lactobacillus paracasei</i> â€enriched artichokes in the treatment of patients with functional constipation – a doubleâ€blind, controlled, crossover study. Alimentary Pharmacology and Therapeutics, 2012, 35, 441-450.	1.9	74
33	Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread. International Journal of Food Microbiology, 2012, 156, 278-285.	2.1	67
34	Role of the probiotic strain Lactobacillus paracasei LMGP22043 carried by artichokes in influencing faecal bacteria and biochemical parameters in human subjects. Journal of Applied Microbiology, 2011, 111, 155-164.	1.4	23
35	Distinct immunomodulatory properties of Lactobacillus paracasei strains. Journal of Applied Microbiology, 2011, 111, 1482-1491.	1.4	14
36	Effects of Probiotic Lactobacillus paracasei-enriched Artichokes on Constipated Patients. Journal of Clinical Gastroenterology, 2010, 44, S49-S53.	1.1	35

PAOLA LAVERMICOCCA

#	Article	IF	CITATIONS
37	An Rhs-like genetic element is involved in bacteriocin production by Pseudomonas savastanoi pv. savastanoi. Antonie Van Leeuwenhoek, 2010, 98, 505-517.	0.7	20
38	Probiotic table olives: Microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant. International Journal of Food Microbiology, 2010, 140, 6-13.	2.1	147
39	Table Olives. , 2010, , 735-743.		8
40	Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Systematic and Applied Microbiology, 2009, 32, 438-448.	1.2	116
41	Microfluidic technology applied to cell-wall protein analysis of olive related lactic acid bacteria. International Journal of Food Microbiology, 2009, 130, 6-11.	2.1	11
42	Development of a PCR assay for the strain-specific identification of probiotic strain Lactobacillus paracasei IMPC2.1. International Journal of Food Microbiology, 2009, 136, 59-65.	2.1	31
43	Modulation of the immune response by probiotic strains in a mouse model of gluten sensitivity. Cytokine, 2009, 48, 254-259.	1.4	53
44	Antagonistic Activity of Potential Probiotic Lactobacilli Against the Ureolytic Pathogen Yersinia enterocolitica. Current Microbiology, 2008, 56, 175-181.	1.0	35
45	Use of Lactobacillus plantarum fermentation products in bread-making to prevent Bacillus subtilis ropy spoilage. International Journal of Food Microbiology, 2008, 122, 328-332.	2.1	58
46	In Vitro and In Vivo Survival and Transit Tolerance of Potentially Probiotic Strains Carried by Artichokes in the Gastrointestinal Tract. Applied and Environmental Microbiology, 2006, 72, 3042-3045.	1.4	340
47	Highlights on new food research. Digestive and Liver Disease, 2006, 38, S295-S299.	0.4	48
48	Study of Adhesion and Survival of Lactobacilli and Bifidobacteria on Table Olives with the Aim of Formulating a New Probiotic Food. Applied and Environmental Microbiology, 2005, 71, 4233-4240.	1.4	159
49	Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiology Letters, 2004, 233, 289-295.	0.7	206
50	Interactions between sourdough lactic acid bacteria and exogenous enzymes: effects on the microbial kinetics of acidification and dough textural properties. Food Microbiology, 2003, 20, 67-75.	2.1	61
51	Antifungal Activity of Phenyllactic Acid against Molds Isolated from Bakery Products. Applied and Environmental Microbiology, 2003, 69, 634-640.	1.4	379
52	Exopolysaccharides Produced by Plant Pathogenic Bacteria Affect Ascorbate Metabolism in Nicotiana tabacum. Plant and Cell Physiology, 2003, 44, 803-810.	1.5	34
53	Reduction of Olive Knot Disease by a Bacteriocin from Pseudomonas syringae pv. ciccaronei. Applied and Environmental Microbiology, 2002, 68, 1403-1407.	1.4	55
54	Proteolysis by Sourdough Lactic Acid Bacteria: Effects on Wheat Flour Protein Fractions and Gliadin Peptides Involved in Human Cereal Intolerance. Applied and Environmental Microbiology, 2002, 68, 623-633.	1.4	256

PAOLA LAVERMICOCCA

#	Article	IF	CITATIONS
55	5,7-Diamino-5,7,9-trideoxynon-2-ulosonic acid: a novel sugar from a phytopathogenic Pseudomonas lipopolysaccharide. Carbohydrate Research, 2002, 337, 955-959.	1.1	9
56	Structural determination of the phytotoxic mannan exopolysaccharide from Pseudomonas syringae pv. ciccaronei. Carbohydrate Research, 2001, 330, 271-277.	1.1	31
57	Phenotypic and molecular identification and clustering of lactic acid bacteria and yeasts from wheat (species Triticum durum and Triticum aestivum) sourdoughs of Southern Italy. International Journal of Food Microbiology, 2001, 64, 95-104.	2.1	229
58	Arabinose fermentation by Lactobacillus plantarum in sourdough with added pentosans and alphaalpha-L-arabinofuranosidase: a tool to increase the production of acetic acid. Journal of Applied Microbiology, 2000, 88, 317-324.	1.4	65
59	Purification and Characterization of Novel Antifungal Compounds from the Sourdough Lactobacillus plantarum Strain 21B. Applied and Environmental Microbiology, 2000, 66, 4084-4090.	1.4	540
60	Bacteriocin production byPseudomonas syringaepv.ciccaroneiNCPPB2355. Isolation and partial characterization of the antimicrobial compound. Journal of Applied Microbiology, 1999, 86, 257-265.	1.4	23
61	Added pentosans in breadmaking: fermentations of derived pentoses by sourdough lactic acid bacteria. Food Microbiology, 1999, 16, 409-418.	2.1	35
62	Presence of β-glycosyl linkages in caryophyllan: the main polysaccharide from the Pseudomonas caryophylli LPS fraction. Carbohydrate Research, 1998, 307, 167-172.	1.1	8
63	Corceptins, new bioactive lipodepsipeptides from cultures ofPseudomonas corrugata. FEBS Letters, 1998, 433, 317-320.	1.3	70
64	Biological properties and spectrum of activity ofPseudomonas syringaepv.syringaetoxins. Physiological and Molecular Plant Pathology, 1997, 50, 129-140.	1.3	119
65	Lipopolysaccharides from three phytopathogenic pseudomonads. Phytochemistry, 1997, 46, 289-292.	1.4	1
66	Effect of syringomycin-E and syringopeptins on isolated plant mitochondria. Physiological and Molecular Plant Pathology, 1996, 48, 325-334.	1.3	16
67	Analysis of the polysaccharide components of the lipopolysaccharide fraction of Pseudomonas caryophylli. Carbohydrate Research, 1996, 284, 119-133.	1.1	33
68	Production of syringomycins and syringopeptins by Pseudomonas syringae pv. atrofaciens. Plant Pathology, 1996, 45, 316-322.	1.2	28
69	Phytotoxin production byPseudomonas syringaepv.syringae: Syringopeptin production bysyrmutants defective in biosynthesis or secretion of syringomycin. FEMS Microbiology Letters, 1996, 138, 35-39.	0.7	31
70	A novel 4-C-branched sugar from the lipopolysaccharide of the bacterium Pseudomonas caryophylli. Carbohydrate Research, 1995, 267, 307-311.	1.1	33
71	Phytotoxic properties of Pseudomonas syringae pv. syringae toxins. Physiological and Molecular Plant Pathology, 1992, 40, 107-116.	1.3	102
72	The occurrence and characterization of a syringomycin-macromolecular complex in cultures of Pseudomonas syringae pv. syringae. Physiological and Molecular Plant Pathology, 1992, 40, 91-105.	1.3	14

#	Article	IF	CITATIONS
73	A Semiselective Medium for the Isolation of <i>Pseudomonas syringae</i> pv. <i>savastanoi</i> . Phytopathology, 1989, 79, 185.	1.1	28
74	Degradation of Lycorine by Pseudomonas Species Strain ITM 311. Journal of Natural Products, 1985, 48, 564-570.	1.5	27
75	A Predictive Growth Model for Pro-technological and Probiotic Lacticaseibacillus paracasei Strains Fermenting White Cabbage. Frontiers in Microbiology, 0, 13, .	1.5	4