Liuting Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5653891/publications.pdf Version: 2024-02-01

Ι ΠΙΤΙΝΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Metal organic framework supported niobium pentoxide nanoparticles with exceptional catalytic effect on hydrogen storage behavior of MgH2. Green Energy and Environment, 2023, 8, 589-600.	8.7	29
2	Enhanced hydrogen storage properties of Mg by the synergistic effect of grain refinement and NiTiO3 nanoparticles. Journal of Magnesium and Alloys, 2022, 10, 3542-3552.	11.9	38
3	0D/1D/2D Co@Co2Mo3O8 nanocomposite constructed by mutual-supported Co2Mo3O8 nanosheet and Co nanoparticle: Synthesis and enhanced hydrolytic dehydrogenation of ammonia borane. Chemical Engineering Journal, 2022, 431, 133697.	12.7	19
4	The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2. Chinese Journal of Chemical Engineering, 2022, 43, 343-352.	3.5	15
5	Construction of carbon covered Mg2NiH4 nanocrystalline for hydrogen storage. Journal of Alloys and Compounds, 2022, 905, 164169.	5.5	15
6	Recent advances in metastable alloys for hydrogen storage: a review. Rare Metals, 2022, 41, 1797-1817.	7.1	93
7	Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1464-1473.	4.9	23
8	Enhanced hydrogen storage properties of high-loading nanoconfined LiBH4–Mg(BH4)2 composites with porous hollow carbon nanospheres. International Journal of Hydrogen Energy, 2021, 46, 852-864.	7.1	25
9	Superior catalysis of NbN nanoparticles with intrinsic multiple valence on reversible hydrogen storage properties of magnesium hydride. International Journal of Hydrogen Energy, 2021, 46, 814-822.	7.1	19
10	Improved reversible dehydrogenation properties of Mg(BH4)2 catalyzed by dual-cation transition metal fluorides K2TiF6 and K2NbF7. Chemical Engineering Journal, 2021, 412, 128738.	12.7	15
11	The dehydrogenation kinetics and reversibility improvements of Mg(BH4)2 doped with Ti nano-particles under mild conditions. International Journal of Hydrogen Energy, 2021, 46, 23737-23747.	7.1	20
12	Effect of Different Amounts of TiF3 on the Reversible Hydrogen Storage Properties of 2LiBH4–Li3AlH6 Composite. Frontiers in Chemistry, 2021, 9, 693302.	3.6	1
13	Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2. Rare Metals, 2021, 40, 3195.	7.1	78
14	Enabling easy and efficient hydrogen release below 80°C from NaBH4 with multi-hydroxyl xylitol. International Journal of Hydrogen Energy, 2021, 46, 28156-28165.	7.1	7
15	Development of Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage. Journal of Alloys and Compounds, 2021, 875, 160035.	5.5	32
16	Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1565-1583.	4.9	26
17	Mn nanoparticles enhanced dehydrogenation and hydrogenation kinetics of MgH2 for hydrogen storage. Transactions of Nonferrous Metals Society of China, 2021, 31, 3469-3477.	4.2	31
18	In-situ synthesis of amorphous Mg(BH4)2 and chloride composite modified by NbF5 for superior reversible hydrogen storage properties. International Journal of Hydrogen Energy, 2020, 45, 2044-2053.	7.1	28

LIUTING ZHANG

#	Article	IF	CITATIONS
19	Superior de/hydrogenation performances of MgH2 catalyzed by 3D flower-like TiO2@C nanostructures. Journal of Energy Chemistry, 2020, 46, 191-198.	12.9	88
20	Enhanced hydrogen storage properties of MgH2 by the synergetic catalysis of Zr0.4Ti0.6Co nanosheets and carbon nanotubes. Applied Surface Science, 2020, 504, 144465.	6.1	47
21	Realizing Hydrogen De/Absorption Under Low Temperature for MgH2 by Doping Mn-Based Catalysts. Nanomaterials, 2020, 10, 1745.	4.1	25
22	LiAlH ₄ as a "Microlighter―on the Fluorographite Surface Triggering the Dehydrogenation of Mg(BH ₄) ₂ : Toward More than 7 wt % Hydrogen Release below 70 °C. ACS Applied Energy Materials, 2020, 3, 3033-3041.	5.1	18
23	Excellent catalysis of Mn ₃ O ₄ nanoparticles on the hydrogen storage properties of MgH ₂ : an experimental and theoretical study. Nanoscale Advances, 2020, 2, 1666-1675.	4.6	35
24	The remarkably improved hydrogen storage performance of MgH ₂ by the synergetic effect of an FeNi/rGO nanocomposite. Dalton Transactions, 2020, 49, 4146-4154.	3.3	46
25	Enhancing Hydrogen Storage Properties of MgH2 by Transition Metals and Carbon Materials: A Brief Review. Frontiers in Chemistry, 2020, 8, 552.	3.6	76
26	Superior catalytic effect of facile synthesized LaNi4.5Mn0.5 submicro-particles on the hydrogen storage properties of MgH2. Journal of Alloys and Compounds, 2020, 844, 156069.	5.5	25
27	Insights into 2D graphene-like TiO2 (B) nanosheets as highly efficient catalyst for improved low-temperature hydrogen storage properties of MgH2. Materials Today Energy, 2020, 16, 100411.	4.7	25
28	Remarkably improved hydrogen storage properties of carbon layers covered nanocrystalline Mg with certain air stability. International Journal of Hydrogen Energy, 2020, 45, 28134-28143.	7.1	20
29	Ultra-fast dehydrogenation behavior at low temperature of LiAlH4 modified by fluorographite. International Journal of Hydrogen Energy, 2020, 45, 28123-28133.	7.1	9
30	An in-depth study on the thermodynamics and kinetics of disproportionation behavior in ZrCo–H systems. Journal of Materials Chemistry A, 2020, 8, 9322-9330.	10.3	34
31	Enhanced low temperature hydrogen desorption properties and mechanism of Mg(BH4)2 composited with 2D MXene. International Journal of Hydrogen Energy, 2019, 44, 24292-24300.	7.1	34
32	Two-dimensional ZrCo nanosheets as highly effective catalyst for hydrogen storage in MgH2. Journal of Alloys and Compounds, 2019, 805, 295-302.	5.5	57
33	Superior catalytic effects of FeCo nanosheets on MgH ₂ for hydrogen storage. Dalton Transactions, 2019, 48, 12699-12706.	3.3	43
34	Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2. International Journal of Hydrogen Energy, 2019, 44, 21955-21964.	7.1	100
35	Catalytic Effect of Facile Synthesized TiH1.971 Nanoparticles on the Hydrogen Storage Properties of MgH2. Nanomaterials, 2019, 9, 1370.	4.1	11
36	Synergistic catalysis in monodispersed transition metal oxide nanoparticles anchored on amorphous carbon for excellent low-temperature dehydrogenation of magnesium hydride. Materials Today Energy, 2019, 12, 146-154.	4.7	57

LIUTING ZHANG

#	Article	IF	CITATIONS
37	Highly dispersed metal nanoparticles on TiO2 acted as nano redox reactor and its synergistic catalysis on the hydrogen storage properties of magnesium hydride. International Journal of Hydrogen Energy, 2019, 44, 15100-15109.	7.1	29
38	Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy, 2019, 61, 540-549.	16.0	124
39	Excellent catalysis of TiO ₂ nanosheets with high-surface-energy {001} facets on the hydrogen storage properties of MgH ₂ . Nanoscale, 2019, 11, 7465-7473.	5.6	89
40	A striking catalytic effect of facile synthesized ZrMn ₂ nanoparticles on the de/rehydrogenation properties of MgH ₂ . Journal of Materials Chemistry A, 2019, 7, 5626-5634.	10.3	118
41	Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride. Journal of Materials Chemistry A, 2019, 7, 5277-5287.	10.3	88
42	A new strategy for remarkably improving anti-disproportionation performance and cycling stabilities of ZrCo-based hydrogen isotope storage alloys by Cu substitution and controlling cutoff desorption pressure. International Journal of Hydrogen Energy, 2019, 44, 28242-28251.	7.1	36
43	Improved hydrogen storage properties of MgH2 by the addition of TiCN and its catalytic mechanism. SN Applied Sciences, 2019, 1, 1.	2.9	3
44	ZIF-67 derived Co@CNTs nanoparticles: Remarkably improved hydrogen storage properties of MgH2 and synergetic catalysis mechanism. International Journal of Hydrogen Energy, 2019, 44, 1059-1069.	7.1	111
45	Highly synergetic catalytic mechanism of Ni@g-C3N4 on the superior hydrogen storage performance of Li-Mg-B-H system. Energy Storage Materials, 2018, 13, 199-206.	18.0	58
46	Synergistic Catalytic Activity of Porous Rod-like TMTiO ₃ (TM = Ni and Co) for Reversible Hydrogen Storage of Magnesium Hydride. Journal of Physical Chemistry C, 2018, 122, 27973-27982.	3.1	61
47	Enhanced reversible hydrogen desorption properties and mechanism of Mg(BH4)2-AlH3-LiH composite. Journal of Alloys and Compounds, 2018, 762, 548-554.	5.5	14
48	Enhanced hydrogen storage properties of MgH ₂ with numerous hydrogen diffusion channels provided by Na ₂ Ti ₃ O ₇ nanotubes. Journal of Materials Chemistry A, 2017, 5, 6178-6185.	10.3	89
49	Facile synthesis of bowl-like 3D Mg(BH ₄) ₂ –NaBH ₄ –fluorographene composite with unexpected superior dehydrogenation performances. Journal of Materials Chemistry A, 2017, 5, 9723-9732.	10.3	28
50	Enhanced hydrogen storage properties of a dual-cation (Li ⁺ , Mg ²⁺) borohydride and its dehydrogenation mechanism. RSC Advances, 2017, 7, 36852-36859.	3.6	11
51	A new strategy to remarkably improve the low-temperature reversible hydrogen desorption performances of LiBH4 by compositing with fluorographene. International Journal of Hydrogen Energy, 2017, 42, 20046-20055.	7.1	11
52	Remarkably Improved Hydrogen Storage Performance of MgH ₂ Catalyzed by Multivalence NbH _{<i>x</i>} Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 8554-8562.	3.1	73
53	Remarkable hydrogen desorption properties and mechanisms of the Mg ₂ FeH ₆ @MgH ₂ core–shell nanostructure. Journal of Materials Chemistry A, 2015, 3, 5517-5524.	10.3	54
54	Enhanced hydrogen storage capacity and reversibility of LiBH4 nanoconfined in the densified zeolite-templated carbon with high mechanical stability. Nano Energy, 2015, 15, 244-255.	16.0	58

LIUTING ZHANG

#	Article	IF	CITATIONS
55	Remarkable enhancement in dehydrogenation properties of Mg(BH4)2 modified by the synergetic effect of fluorographite and LiBH4. International Journal of Hydrogen Energy, 2015, 40, 14163-14172.	7.1	22
56	Superior dehydrogenation performance of nanoscale lithium borohydride modified with fluorographite. International Journal of Hydrogen Energy, 2014, 39, 896-904.	7.1	19
57	Fluorographene nanosheets enhanced hydrogen absorption and desorption performances of magnesium hydride. International Journal of Hydrogen Energy, 2014, 39, 12715-12726.	7.1	26
58	Dehydriding properties of γ-AlH3. International Journal of Hydrogen Energy, 2013, 38, 10851-10856.	7.1	28
59	Size effect on hydrogen storage properties of NaAlH4 confined in uniform porous carbons. Nano Energy, 2013, 2, 995-1003.	16.0	38
60	Fast hydrogen release under moderate conditions from NaBH ₄ destabilized by fluorographite. RSC Advances, 2013, 4, 2550-2556.	3.6	21
61	Enhanced hydriding–dehydriding performance of 2LiBH4–MgH2 composite by the catalytic effects of transition metal chlorides. Journal of Materials Chemistry, 2012, 22, 20764.	6.7	53
62	Effects of NbF5 addition on the de/rehydrogenation properties of 2LiBH4/MgH2 hydrogen storage system. International Journal of Hydrogen Energy, 2012, 37, 13147-13154.	7.1	45
63	A Novel Li–Ca–B–H Complex Borohydride: Its Synthesis and Hydrogen Storage Properties. Journal of Physical Chemistry C, 2011, 115, 19986-19993.	3.1	7