Richard J Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5653721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A conserved βâ€bulge glycine residue facilitates folding and increases stability of the mouse αâ€defensin cryptdinâ€4. Peptide Science, 2022, 114, e24250.	1.0	1
2	In Vivo Pharmacodynamic Method to Assess Complement C5a Receptor Antagonist Efficacy. ACS Pharmacology and Translational Science, 2022, 5, 41-51.	2.5	5
3	Unexpected Off-Target Activities for Recombinant C5a in Human Macrophages. Journal of Immunology, 2022, 208, 133-142.	0.4	1
4	Solution NMR and racemic crystallography provide insights into a novel structural class of cyclic plant peptides. RSC Chemical Biology, 2021, 2, 1682-1691.	2.0	1
5	Chemical synthesis and characterisation of the complement C5 inhibitory peptide zilucoplan. Amino Acids, 2021, 53, 143-147.	1.2	12
6	ERK and mTORC1 Inhibitors Enhance the Anti-Cancer Capacity of the Octpep-1 Venom-Derived Peptide in Melanoma BRAF(V600E) Mutations. Toxins, 2021, 13, 146.	1.5	7
7	Pursuing Orally Bioavailable Hepcidin Analogues via Cyclic N-Methylated Mini-Hepcidins. Biomedicines, 2021, 9, 164.	1.4	4
8	Advances in venom peptide drug discovery: where are we at and where are we heading?. Expert Opinion on Drug Discovery, 2021, 16, 1163-1173.	2.5	15
9	Effects of backbone cyclization on the pharmacokinetics and drug efficiency of the orally active analgesic conotoxin cVc1.1. Medicine in Drug Discovery, 2021, 10, 100087.	2.3	6
10	Design of a Stable Cyclic Peptide Analgesic Derived from Sunflower Seeds that Targets the κ-Opioid Receptor for the Treatment of Chronic Abdominal Pain. Journal of Medicinal Chemistry, 2021, 64, 9042-9055.	2.9	17
11	Synthetic hookworm-derived peptides are potent modulators of primary human immune cell function that protect against experimental colitis inÀvivo. Journal of Biological Chemistry, 2021, 297, 100834.	1.6	5
12	LEAP-2: An Emerging Endogenous Ghrelin Receptor Antagonist in the Pathophysiology of Obesity. Frontiers in Endocrinology, 2021, 12, 717544.	1.5	16
13	Anaphylatoxin receptor promiscuity for commonly used complement C5a peptide agonists. International Immunopharmacology, 2021, 100, 108074.	1.7	7
14	A chameleonic macrocyclic peptide with drug delivery applications. Chemical Science, 2021, 12, 6670-6683.	3.7	9
15	Biostimulation of Bacteria in Liquid Culture for Identification of New Antimicrobial Compounds. Pharmaceuticals, 2021, 14, 1232.	1.7	3
16	Development of Potent and Selective Agonists for Complement C5a Receptor 1 with In Vivo Activity. Journal of Medicinal Chemistry, 2021, 64, 16598-16608.	2.9	8
17	Mitochondrial C5aR1 activity in macrophages controls IL-1Î ² production underlying sterile inflammation. Science Immunology, 2021, 6, eabf2489.	5.6	50
18	Development of Synthetic Human and Mouse C5a: Application to Binding and Functional Assays <i>In Vitro</i> and <i>In Vivo</i> . ACS Pharmacology and Translational Science, 2021, 4, 1808-1817.	2.5	4

#	Article	IF	CITATIONS
19	Defining the Familial Fold of the Vicilin-Buried Peptide Family. Journal of Natural Products, 2020, 83, 3030-3040.	1.5	6
20	Pharmacological characterisation of small molecule C5aR1 inhibitors in human cells reveals biased activities for signalling and function. Biochemical Pharmacology, 2020, 180, 114156.	2.0	47
21	Exploring the Use of Helicogenic Amino Acids for Optimising Single Chain Relaxin-3 Peptide Agonists. Biomedicines, 2020, 8, 415.	1.4	2
22	Development of Relaxin-3 Agonists and Antagonists Based on Grafted Disulfide-Stabilized Scaffolds. Frontiers in Chemistry, 2020, 8, 87.	1.8	5
23	C5aR2 Activation Broadly Modulates the Signaling and Function of Primary Human Macrophages. Journal of Immunology, 2020, 205, 1102-1112.	0.4	37
24	Preclinical Pharmacokinetics of Complement C5a Receptor Antagonists PMX53 and PMX205 in Mice. ACS Omega, 2020, 5, 2345-2354.	1.6	64
25	The "C3aR Antagonist―SB290157 is a Partial C5aR2 Agonist. Frontiers in Pharmacology, 2020, 11, 591398.	1.6	11
26	Periplasmic Expression of 4/7 α-Conotoxin TxIA Analogs in E. coli Favors Ribbon Isomer Formation – Suggestion of a Binding Mode at the α7 nAChR. Frontiers in Pharmacology, 2019, 10, 577.	1.6	8
27	Transcriptome and toxin family analysis of the paralysis tick, Ixodes holocyclus. International Journal for Parasitology, 2018, 48, 71-82.	1.3	33
28	Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry. Journal of Clinical Investigation, 2018, 128, 1569-1580.	3.9	27
29	Development and validation of a LC-MS/MS assay for pharmacokinetic studies of complement C5a receptor antagonists PMX53 and PMX205 in mice. Scientific Reports, 2018, 8, 8101.	1.6	21
30	Structure–Activity Studies Reveal the Molecular Basis for GABA _B -Receptor Mediated Inhibition of High Voltage-Activated Calcium Channels by α-Conotoxin Vc1.1. ACS Chemical Biology, 2018, 13, 1577-1587.	1.6	28
31	Discovery of peptide probes to modulate oxytocin-type receptors of insects. Scientific Reports, 2018, 8, 10020.	1.6	15
32	Molecular Engineering of Conus Peptides as Therapeutic Leads. Advances in Experimental Medicine and Biology, 2017, 1030, 229-254.	0.8	6
33	G-Protein Coupled Receptors Targeted by Analgesic Venom Peptides. Toxins, 2017, 9, 372.	1.5	13
34	Helminth Immunomodulation in Autoimmune Disease. Frontiers in Immunology, 2017, 8, 453.	2.2	182
35	Effects of linker sequence modifications on the structure, stability, and biological activity of a cyclic αâ€conotoxin. Biopolymers, 2016, 106, 864-875.	1.2	10
36	Unveiling the diversity of cyclotides by combining peptidome and transcriptome analysis. Biopolymers, 2016, 106, 774-783.	1.2	9

#	Article	IF	CITATIONS
37	Structure–Activity Studies of Cysteineâ€Rich αâ€Conotoxins that Inhibit Highâ€Voltageâ€Activated Calcium Channels via GABA _B Receptor Activation Reveal a Minimal Functional Motif. Angewandte Chemie - International Edition, 2016, 55, 4692-4696.	7.2	54
38	Discovery of functionally selective C5aR2 ligands: novel modulators of C5a signalling. Immunology and Cell Biology, 2016, 94, 787-795.	1.0	68
39	The Nâ€ŧerminal proâ€domain of the kalata B1 cyclotide precursor is intrinsically unstructured. Biopolymers, 2016, 106, 825-833.	1.2	8
40	Tick holocyclotoxins trigger host paralysis by presynaptic inhibition. Scientific Reports, 2016, 6, 29446.	1.6	31
41	Structure–Activity Studies of Cysteineâ€Rich αâ€Conotoxins that Inhibit Highâ€Voltageâ€Activated Calcium Channels via GABA _B Receptor Activation Reveal a Minimal Functional Motif. Angewandte Chemie, 2016, 128, 4770-4774.	1.6	2
42	Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition. Acta Biomaterialia, 2016, 41, 264-272.	4.1	19
43	Transforming conotoxins into cyclotides: Backbone cyclization of Pâ€superfamily conotoxins. Biopolymers, 2015, 104, 682-692.	1.2	13
44	<i>In Vivo</i> Efficacy of Anuran Trypsin Inhibitory Peptides against Staphylococcal Skin Infection and the Impact of Peptide Cyclization. Antimicrobial Agents and Chemotherapy, 2015, 59, 2113-2121.	1.4	14
45	Alanine Scan of α-Conotoxin RegIIA Reveals a Selective α3β4 Nicotinic Acetylcholine Receptor Antagonist. Journal of Biological Chemistry, 2015, 290, 1039-1048.	1.6	38
46	Inhibition of Human Prolyl Oligopeptidase Activity by the Cyclotide Psysol 2 Isolated from <i>Psychotria solitudinum</i> . Journal of Natural Products, 2015, 78, 1073-1082.	1.5	42
47	Isolation, Characterization, and Synthesis of the Barrettides: Disulfide-Containing Peptides from the Marine Sponge <i>Geodia barretti</i> . Journal of Natural Products, 2015, 78, 1886-1893.	1.5	23
48	Differential Cav2.1 and Cav2.3 channel inhibition by baclofen and α-conotoxin Vc1.1 via GABAB receptor activation. Journal of General Physiology, 2014, 143, 465-479.	0.9	41
49	Design, synthesis, and characterization of cyclic analogues of the iron regulatory peptide hormone hepcidin. Biopolymers, 2013, 100, 519-526.	1.2	12
50	Identifying Key Amino Acid Residues That Affect α-Conotoxin AulB Inhibition of α3β4 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2013, 288, 34428-34442.	1.6	43
51	Novel Inhibitor Cystine Knot Peptides from Momordica charantia. PLoS ONE, 2013, 8, e75334.	1.1	16
52	Engineering Cyclic Peptide Toxins. Methods in Enzymology, 2012, 503, 57-74.	0.4	36
53	Cyclization of conotoxins to improve their biopharmaceutical properties. Toxicon, 2012, 59, 446-455.	0.8	68
54	Interlocking Disulfides in Circular Proteins: Toward Efficient Oxidative Folding of Cyclotides. Antioxidants and Redox Signaling, 2011, 14, 77-86.	2.5	45

#	Article	IF	CITATIONS
55	The Role of Conserved Glu Residue on Cyclotide Stability and Activity: A Structural and Functional Study of Kalata B12, a Naturally Occurring Glu to Asp Mutant. Biochemistry, 2011, 50, 4077-4086.	1.2	39
56	Design, Synthesis, and Characterization of a Single-Chain Peptide Antagonist for the Relaxin-3 Receptor RXFP3. Journal of the American Chemical Society, 2011, 133, 4965-4974.	6.6	86
57	Stabilization of $\hat{I}\pm$ -Conotoxin AulB: Influences of Disulfide Connectivity and Backbone Cyclization. Antioxidants and Redox Signaling, 2011, 14, 87-95.	2.5	43
58	Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood, 2011, 118, 6709-6717.	0.6	197
59	Chemical Re-engineering of Chlorotoxin Improves Bioconjugation Properties for Tumor Imaging and Targeted Therapy. Journal of Medicinal Chemistry, 2011, 54, 782-787.	2.9	91
60	Effects of Cyclization on Stability, Structure, and Activity of α-Conotoxin RgIA at the α9α10 Nicotinic Acetylcholine Receptor and GABABReceptor. Journal of Medicinal Chemistry, 2011, 54, 6984-6992.	2.9	59
61	Understanding the Structure/Activity Relationships of the Iron Regulatory Peptide Hepcidin. Chemistry and Biology, 2011, 18, 336-343.	6.2	50
62	Engineering of Conotoxins for the Treatment of Pain. Current Pharmaceutical Design, 2011, 17, 4242-4253.	0.9	47
63	Structure and Activity of α-Conotoxin PelA at Nicotinic Acetylcholine Receptor Subtypes and GABAB Receptor-coupled N-type Calcium Channels. Journal of Biological Chemistry, 2011, 286, 10233-10237.	1.6	43
64	Structural and Functional Analysis of Human Liverâ€Expressed Antimicrobial Peptide 2. ChemBioChem, 2010, 11, 2148-2157.	1.3	48
65	The Engineering of an Orally Active Conotoxin for the Treatment of Neuropathic Pain. Angewandte Chemie - International Edition, 2010, 49, 6545-6548.	7.2	280
66	Invited reviewnative chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins. Biopolymers, 2010, 94, 414-422.	1.2	90
67	Evaluation of toxicity and antitumor activity of cycloviolacin O2 in mice. Biopolymers, 2010, 94, 626-634.	1.2	39
68	Sunflower trypsin inhibitorâ€1, proteolytic studies on a trypsin inhibitor peptide and its analogs. Biopolymers, 2010, 94, 665-672.	1.2	69
69	Lysine-scanning Mutagenesis Reveals an Amendable Face of the Cyclotide Kalata B1 for the Optimization of Nematocidal Activity. Journal of Biological Chemistry, 2010, 285, 10797-10805.	1.6	99
70	A Synthetic Combinatorial Strategy for Developing α-Conotoxin Analogs as Potent α7 Nicotinic Acetylcholine Receptor Antagonists. Journal of Biological Chemistry, 2010, 285, 1809-1821.	1.6	34
71	Analgesic α-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in sensory neurons of α9 nicotinic receptor knockout mice. Channels, 2010, 4, 51-54.	1.5	75
72	Isolation, Sequencing, and Structureâ ´ Activity Relationships of Cyclotides. Journal of Natural Products, 2010, 73, 1610-1622.	1.5	64

#	Article	IF	CITATIONS
73	Inhibition of Neuronal Nicotinic Acetylcholine Receptor Subtypes by α-Conotoxin GID and Analogues*. Journal of Biological Chemistry, 2009, 284, 4944-4951.	1.6	38
74	Rational Design of α-Conotoxin Analogues Targeting α7 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2009, 284, 9498-9512.	1.6	40
75	Dissecting the Oxidative Folding of Circular Cystine Knot Miniproteins. Antioxidants and Redox Signaling, 2009, 11, 971-980.	2.5	55
76	Scanning Mutagenesis of α-Conotoxin Vc1.1 Reveals Residues Crucial for Activity at the α9α10 Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2009, 284, 20275-20284.	1.6	78
77	Beta-arrestin 2 is required for complement C1q expression in macrophages and constrains factor-independent survival. Molecular Immunology, 2009, 47, 340-347.	1.0	19
78	Ultra‧table Peptide Scaffolds for Protein Engineering—Synthesis and Folding of the Circular Cystine Knotted Cyclotide Cycloviolacin O2. ChemBioChem, 2008, 9, 103-113.	1.3	87
79	The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. Phytochemistry, 2008, 69, 939-952.	1.4	131
80	The threeâ€dimensional structure of the analgesic αâ€conotoxin, RgIA. FEBS Letters, 2008, 582, 597-602.	1.3	31
81	Engineering Stabilized Vascular Endothelial Growth Factor-A Antagonists: Synthesis, Structural Characterization, and Bioactivity of Grafted Analogues of Cyclotides. Journal of Medicinal Chemistry, 2008, 51, 7697-7704.	2.9	177
82	Analgesic α-Conotoxins Vc1.1 and Rg1A Inhibit N-Type Calcium Channels in Rat Sensory Neurons via GABA _B Receptor Activation. Journal of Neuroscience, 2008, 28, 10943-10951.	1.7	158
83	Binding Mode of α-Conotoxins to an Acetylcholine Binding Protein Determined by Saturation Transfer Difference NMR. Protein and Peptide Letters, 2008, 15, 910-914.	0.4	4
84	A Novel Plant Protein-disulfide Isomerase Involved in the Oxidative Folding of Cystine Knot Defense Proteins. Journal of Biological Chemistry, 2007, 282, 20435-20446.	1.6	119
85	Are α9α10 Nicotinic Acetylcholine Receptors a Pain Target for α-Conotoxins?. Molecular Pharmacology, 2007, 72, 1406-1410.	1.0	106
86	Potential therapeutic applications of the cyclotides and related cystine knot mini-proteins. Expert Opinion on Investigational Drugs, 2007, 16, 595-604.	1.9	83
87	The Cyclotide Fingerprint inOldenlandia affinis: Elucidation of Chemically Modified, Linear and Novel Macrocyclic Peptides. ChemBioChem, 2007, 8, 1001-1011.	1.3	108
88	Structure of Î \pm -conotoxin BulA: influences of disulfide connectivity on structural dynamics. BMC Structural Biology, 2007, 7, 28.	2.3	46
89	Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design. Biochemical Journal, 2006, 394, 85-93.	1.7	162
90	Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif. Biochemical Journal, 2006, 393, 619-626.	1.7	107

#	Article	IF	CITATIONS
91	The Synthesis, Structural Characterization, and Receptor Specificity of the α-Conotoxin Vc1.1. Journal of Biological Chemistry, 2006, 281, 23254-23263.	1.6	122
92	The Absolute Structural Requirement for a Proline in the P3′-position of Bowman-Birk Protease Inhibitors Is Surmounted in the Minimized SFTI-1 Scaffold. Journal of Biological Chemistry, 2006, 281, 23668-23675.	1.6	66
93	Engineering stable peptide toxins by means of backbone cyclization: Stabilization of the Â-conotoxin MII. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13767-13772.	3.3	220
94	Disulfide Bond Mutagenesis and the Structure and Function of the Head-to-Tail Macrocyclic Trypsin Inhibitor SFTI-1,. Biochemistry, 2005, 44, 1145-1153.	1.2	53
95	Conserved Structural and Sequence Elements Implicated in the Processing of Gene-encoded Circular Proteins. Journal of Biological Chemistry, 2004, 279, 46858-46867.	1.6	122
96	Differences in the Average Single Molecule Activities ofE. coliβ-Galactosidase: Effect of Source, Enzyme Molecule Age and Temperature of Induction. The Protein Journal, 2003, 22, 555-561.	1.1	25
97	Diversity in the disulfide folding pathways of cystine knot peptides. International Journal of Peptide Research and Therapeutics, 2003, 10, 523-531.	0.1	12
98	Linearization of a Naturally Occurring Circular Protein Maintains Structure but Eliminates Hemolytic Activity,. Biochemistry, 2003, 42, 6688-6695.	1.2	110
99	Diversity in the disulfide folding pathways of cystine knot peptides. International Journal of Peptide Research and Therapeutics, 2003, 10, 523-531.	0.9	3
100	Microcin J25 Has a Threaded Sidechain-to-Backbone Ring Structure and Not a Head-to-Tail Cyclized Backbone. Journal of the American Chemical Society, 2003, 125, 12464-12474.	6.6	248
101	Disulfide Folding Pathways of Cystine Knot Proteins. Journal of Biological Chemistry, 2003, 278, 6314-6322.	1.6	116
102	Structureâ€Function Studies of the Plant Cyclotides: The Role of a Circular Protein Backbone. Toxin Reviews, 2003, 22, 555-576.	1.5	4
103	A sponge allelochemical induces ascidian settlement but inhibits metamorphosis. Marine Biology, 2002, 140, 355-363.	0.7	37
104	Antifungal Alkyl Amino Alcohols from the Tropical Marine SpongeHaliclonan. sp Journal of Natural Products, 2001, 64, 1568-1571.	1.5	60
105	Discovery and structures of the cyclotides: novel macrocyclic peptides from plants. International Journal of Peptide Research and Therapeutics, 2001, 8, 119-128.	0.1	9
106	Discovery and structures of the cyclotides: novel macrocyclic peptides from plants. International Journal of Peptide Research and Therapeutics, 2001, 8, 119-128.	0.1	14
107	New Isocyano and Isothiocyanato Terpene Metabolites from the Tropical Marine Sponge Acanthella cavernosa. Tetrahedron, 2000, 56, 3071-3076.	1.0	34
108	Vinylfurans Revisited:Â A New Sesquiterpene fromEuryspongiadeliculata. Journal of Natural Products, 1999, 62, 915-916.	1.5	12

#	Article	IF	CITATIONS
109	The haliclonacyclamines, cytotoxic tertiary alkaloids from the tropical marine sponge Haliclona sp. Tetrahedron, 1998, 54, 8811-8826.	1.0	62
110	Mammography and age: Are we targeting the wrong women? A community survey of women and physicians. Cancer, 1991, 67, 2010-2014.	2.0	110