Oliver Schlüter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5653437/publications.pdf

Version: 2024-02-01

all docs

66234 60497 6,920 105 42 81 citations h-index g-index papers 107 107 107 5530 docs citations times ranked citing authors

#	Article	IF	Citations
1	Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research, 2013, 57, 802-823.	1.5	1,029
2	Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science and Emerging Technologies, 2013, 17, 1-11.	2.7	532
3	Emerging Technologies in Food Processing. Annual Review of Food Science and Technology, 2011, 2, 203-235.	5.1	336
4	Cold plasma effects on enzyme activity in a model food system. Innovative Food Science and Emerging Technologies, 2013, 19, 146-152.	2.7	241
5	Interactions of Non-Thermal Atmospheric Pressure Plasma with Solid and Liquid Food Systems: A Review. Food Engineering Reviews, 2015, 7, 82-108.	3.1	215
6	Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon, 2016, 2, e00218.	1.4	206
7	Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control, 2015, 55, 221-229.	2.8	181
8	Impact of cold plasma on Citrobacter freundii in apple juice: Inactivation kinetics and mechanisms. International Journal of Food Microbiology, 2014, 174, 63-71.	2.1	167
9	Food waste valorisation and circular economy concepts in insect production and processing. Waste Management, 2020, 118, 600-609.	3.7	142
10	Opinion on the use of plasma processes for treatment of foods*. Molecular Nutrition and Food Research, 2013, 57, 920-927.	1.5	135
11	Perspectives from CO+RE: How COVID-19 changed our food systems and food security paradigms. Current Research in Food Science, 2020, 3, 166-172.	2.7	134
12	Treating lamb's lettuce with a cold plasma – Influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of Valerianella locusta. LWT - Food Science and Technology, 2011, 44, 2285-2289.	2. 5	131
13	Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes. Innovative Food Science and Emerging Technologies, 2012, 16, 381-390.	2.7	130
14	Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum sativum †Salamanca†M. Journal of Food Engineering, 2015, 167, 166-174.	2.7	127
15	Surface morphology and chemical composition of lamb's lettuce (Valerianella locusta) after exposure to a low-pressure oxygen plasma. Food Chemistry, 2010, 122, 1145-1152.	4.2	123
16	Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition and Food Research, 2017, 61, 1600520.	1.5	116
17	Kinetic studies on high-pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innovative Food Science and Emerging Technologies, 2001, 2, 261-272.	2.7	106
18	The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate. Innovative Food Science and Emerging Technologies, 2016, 38, 374-383.	2.7	106

#	Article	IF	Citations
19	Sublethal Injury and Viable but Non-culturable (VBNC) State in Microorganisms During Preservation of Food and Biological Materials by Non-thermal Processes. Frontiers in Microbiology, 2018, 9, 2773.	1.5	103
20	Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: Evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biology and Technology, 2013, 84, 81-87.	2.9	99
21	Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato. Innovative Food Science and Emerging Technologies, 2017, 40, 78-86.	2.7	95
22	Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innovative Food Science and Emerging Technologies, 2014, 22, 147-157.	2.7	93
23	Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices. Journal of Food Engineering, 2015, 167, 12-17.	2.7	88
24	Impact of high pressure assisted thawing on the quality of fillets from various fish species. Innovative Food Science and Emerging Technologies, 2003, 4, 257-267.	2.7	86
25	Decontamination of Microbiologically Contaminated Specimen by Direct and Indirect Plasma Treatment. Plasma Processes and Polymers, 2012, 9, 569-575.	1.6	83
26	Atmospheric pressure plasma treatment of Listeria innocua and Escherichia coli at polysaccharide surfaces: Inactivation kinetics and flow cytometric characterization. Innovative Food Science and Emerging Technologies, 2012, 13, 142-150.	2.7	81
27	Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3225-3266.	5.9	76
28	Inactivation of Salmonella Enteritidis PT30 on the surface of unpeeled almonds by cold plasma. Innovative Food Science and Emerging Technologies, 2017, 44, 242-248.	2.7	75
29	Bioavailability of nutrients from edible insects. Current Opinion in Food Science, 2021, 41, 240-248.	4.1	72
30	Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum â€~Salamanca'). Food Research International, 2015, 76, 132-141.	2.9	67
31	High pressure–low temperature processing of foods: impact on cell membranes, texture, color and visual appearance of potato tissue. Innovative Food Science and Emerging Technologies, 2005, 6, 59-71.	2.7	65
32	Cold atmospheric pressure plasma processing of insect flour from Tenebrio molitor: Impact on microbial load and quality attributes in comparison to dry heat treatment. Innovative Food Science and Emerging Technologies, 2016, 36, 277-286.	2.7	64
33	Decontamination and Sensory Properties of Microbiologically Contaminated Fresh Fruits and Vegetables by Microwave Plasma Processed Air (PPA). Journal of Food Processing and Preservation, 2015, 39, 653-662.	0.9	63
34	Impact of plasma processed air (PPA) on quality parameters of fresh produce. Postharvest Biology and Technology, 2015, 100, 120-126.	2.9	60
35	The impact of different process gas compositions on the inactivation effect of an atmospheric pressure plasma jet on Bacillus spores. Innovative Food Science and Emerging Technologies, 2015, 30, 112-118.	2.7	58
36	Characterization of High-Hydrostatic-Pressure Effects on Fresh Produce Using Chlorophyll Fluorescence Image Analysis. Food and Bioprocess Technology, 2009, 2, 291-299.	2.6	57

#	Article	IF	Citations
37	Occurrence and genetic diversity of Arcobacter spp. in a spinach-processing plant and evaluation of two Arcobacter-specific quantitative PCR assays. Systematic and Applied Microbiology, 2013, 36, 235-243.	1.2	56
38	Comparison of volumetric and surface decontamination techniques for innovative processing of mealworm larvae (Tenebrio molitor). Innovative Food Science and Emerging Technologies, 2014, 26, 232-241.	2.7	55
39	Food Safety, a Global Challenge. International Journal of Environmental Research and Public Health, 2016, 13, 67.	1.2	54
40	Metastable States of Water and Ice during Pressure-Supported Freezing of Potato Tissue. Biotechnology Progress, 2004, 20, 799-810.	1.3	51
41	Characterization of individual proteins in pea protein isolates and air classified samples. Food Research International, 2015, 76, 160-167.	2.9	51
42	Edible insect processing pathways and implementation of emerging technologies. Journal of Insects As Food and Feed, 2021, 7, 877-900.	2.1	50
43	Sustainable food protein supply reconciling human and ecosystem health: A Leibniz Position. Global Food Security, 2020, 25, 100367.	4.0	41
44	Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment. Frontiers in Microbiology, 2015, 6, 774.	1.5	37
45	Scale-up to pilot plant dimensions of plasma processed water generation for fresh-cut lettuce treatment. Food Packaging and Shelf Life, 2017, 14, 40-45.	3.3	37
46	Inactivation of Shiga toxin-producing Escherichia coli O104:H4 using cold atmospheric pressure plasma. Journal of Bioscience and Bioengineering, 2015, 120, 275-279.	1.1	36
47	Sanitation of fresh-cut endive lettuce by plasma processed tap water (PPtW) – Up-scaling to industrial level. Innovative Food Science and Emerging Technologies, 2019, 53, 45-55.	2.7	36
48	Fluorimetric detection of protoporphyrins as an indicator for quality monitoring of fresh intact pork meat. Meat Science, 2008, 80, 1320-1325.	2.7	35
49	Effect of pulsed electric fields on cricket (Acheta domesticus) flour: Extraction yield (protein, fat) Tj ETQq1 1 0.784 2022, 76, 102908.	1314 rgBT 2.7	/Overlock 34
50	Effects of different storage conditions on quality related porphyrin fluorescence signatures of pork slices. Meat Science, 2012, 90, 252-258.	2.7	31
51	Evidence for a radial strain gradient in apple fruit cuticles. Planta, 2014, 240, 891-897.	1.6	31
52	Factors involved in Bacillus spore's resistance to cold atmospheric pressure plasma. Innovative Food Science and Emerging Technologies, 2017, 43, 173-181.	2.7	31
53	Characterization of the cultivable microbial community in a spinach-processing plant using MALDI-TOF MS. Food Microbiology, 2013, 34, 406-411.	2.1	29
54	Measuring Behavior of an Acceleration Measuring Unit Implanted in Potatoes. Transactions of the ASABE, 2009, 52, 1267-1274.	1.1	26

#	Article	IF	CITATIONS
55	Reaction Chemistry of 1,4â€Benzopyrone Derivates in Nonâ€Equilibrium Lowâ€Temperature Plasmas. Plasma Processes and Polymers, 2010, 7, 466-473.	1.6	25
56	Development of a flow-fluorescence in situ hybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor. BMC Microbiology, 2013, 13, 278.	1.3	25
57	Inhibition or Stimulation of Ochratoxin A Synthesis on Inoculated Barley Triggered by Diffuse Coplanar Surface Barrier Discharge Plasma. Frontiers in Microbiology, 2018, 9, 2782.	1.5	24
58	Effect of Blanching Plus Fermentation on Selected Functional Properties of Mealworm (Tenebrio) Tj ETQq0 0 0 rş	gBT_/Overl	ock 10 Tf 50
59	Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria. Frontiers in Microbiology, 2015, 6, 939.	1.5	22
60	Experimental determination of thermal conductivity and thermal diffusivity of whole green (unripe) and yellow (ripe) Cavendish bananas under cooling conditions. Journal of Food Engineering, 2014, 128, 46-52.	2.7	21
61	Impact of different water activities (aw) adjusted by solutes on high pressure high temperature inactivation of Bacillus amyloliquefaciens spores. Frontiers in Microbiology, 2015, 6, 689.	1.5	21
62	Insect biodiversity: underutilized bioresource for sustainable applications in life sciences. Regional Environmental Change, 2017, 17, 1445-1454.	1.4	21
63	Analysis of the bacterial community within carrot wash water. Canadian Journal of Microbiology, 2011, 57, 447-452.	0.8	20
64	Screening of microbial communities associated with endive lettuce during postharvest processing on industrial scale. Heliyon, 2018, 4, e00671.	1.4	20
65	VIS/NIR spectroscopy, chlorophyll fluorescence, biospeckle and backscattering to evaluate changes in apples subjected to hydrostatic pressures. Postharvest Biology and Technology, 2014, 96, 88-98.	2.9	19
66	Non-destructive mobile monitoring of microbial contaminations on meat surfaces using porphyrin fluorescence intensities. Meat Science, 2016, 115, 1-8.	2.7	19
67	Comparative study on the high pressure inactivation behavior of the Shiga toxin-producing Escherichia coli O104:H4 and O157:H7 outbreak strains and a non-pathogenic surrogate. Food Microbiology, 2015, 46, 184-194.	2.1	18
68	Plasma Treatment of Food. Contributions To Plasma Physics, 2015, 55, 753-757.	0.5	17
69	Safety Control of Whole Berries by Cold Atmospheric Pressure Plasma Processing: A Review. Journal of Food Protection, 2019, 82, 1233-1243.	0.8	17
70	Thermal Impact on the Culturable Microbial Diversity Along the Processing Chain of Flour From Crickets (Acheta domesticus). Frontiers in Microbiology, 2020, 11, 884.	1.5	17
71	Potential of Flow Cytometric Approaches for Rapid Microbial Detection and Characterization in the Food Industry—A Review. Foods, 2021, 10, 3112.	1.9	17
72	Impact of a Pilot-Scale Plasma-Assisted Washing Process on the Culturable Microbial Community Dynamics Related to Fresh-Cut Endive Lettuce. Applied Sciences (Switzerland), 2018, 8, 2225.	1.3	16

#	Article	IF	Citations
73	Nutrient composition of insects and their potential application in food and feed in Europe. Food Chain, 2014, 4, 129-139.	0.4	16
74	Impact of cold atmospheric pressure plasma processing on storage of blueberries. Journal of Food Processing and Preservation, 2020, 44, e14581.	0.9	15
75	Effect of cold atmospheric pressure plasma processing on quality and shelf life of red currants. LWT - Food Science and Technology, 2021, 151, 112213.	2.5	15
76	High hydrostatic pressure treatment effects on selected tissue properties of fresh horticultural products. Innovative Food Science and Emerging Technologies, 2020, 61, 102326.	2.7	14
77	Principles and Application of Cold Plasma in Food Processing. , 2021, , 519-540.		14
78	Effect of Yarrowia lipolytica RO25 cricket-based hydrolysates on sourdough quality parameters. LWT - Food Science and Technology, 2021, 148, 111760.	2.5	14
79	A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour. Foods, 2016, 5, 17.	1.9	13
80	Characterization of high hydrostatic pressure effects on fresh produce cell turgor using pressure probe analyses. Postharvest Biology and Technology, 2017, 132, 188-194.	2.9	13
81	Potentials of a biogenic residue-based production of Hermetia illucens as fish meal replacement in aquafeed for Oncorhynchus mykiss in Germany. Journal of Insects As Food and Feed, 2018, 4, 5-18.	2.1	13
82	Factors affecting consumer choice of novel non-thermally processed fruit and vegetables products: Evidence from a 4-country study in Europe. Food Research International, 2022, 153, 110975.	2.9	13
83	The role of myoglobin degradation in the formation of zinc protoporphyrin IX in the longissimus lumborum of pork. LWT - Food Science and Technology, 2017, 85, 22-27.	2.5	12
84	Assessment of the bacterial impact on the post-mortem formation of zinc protoporphyrin IX in pork meat. Food Chemistry, 2018, 256, 25-30.	4.2	12
85	Flow Cytometric Assessment of the Morphological and Physiological Changes of Listeria monocytogenes and Escherichia coli in Response to Natural Antimicrobial Exposure. Frontiers in Microbiology, 2018, 9, 2783.	1.5	12
86	Potential of Yarrowia lipolytica and Debaryomyces hansenii strains to produce high quality food ingredients based on cricket powder. LWT - Food Science and Technology, 2020, 119, 108866.	2.5	12
87	Improved Method for Mastitis Detection and Evaluation of Disinfectant Efficiency During Milking Process. Food and Bioprocess Technology, 2010, 3, 892-900.	2.6	11
88	High hydrostatic pressure effects on membrane-related quality parameters of fresh radish tubers. Postharvest Biology and Technology, 2019, 151, 1-9.	2.9	11
89	A Method for Viability Testing of Pectobacterium carotovorum in Postharvest Processing by Means of Flow Cytometry. Food and Bioprocess Technology, 2012, 5, 2871-2879.	2.6	10
90	Aqueous and gaseous plasma applications for the treatment of mung bean seeds. Scientific Reports, 2021, 11, 19681.	1.6	10

#	ARTICLE	IF	CITATIONS
91	Pilot-scale generation of plasma processed air and its influence on microbial count, microbial diversity, and selected quality parameters of dried herbs. Innovative Food Science and Emerging Technologies, 2022, 75, 102890.	2.7	10
92	Effects of thermally treated broiler feed with different organic acid levels on resulting meat composition and parameters related to meat quality. Innovative Food Science and Emerging Technologies, 2014, 26, 397-405.	2.7	8
93	Effect of Cereal α-Amylase/Trypsin Inhibitors on Developmental Characteristics and Abundance of Digestive Enzymes of Mealworm Larvae (Tenebrio molitor L.). Insects, 2021, 12, 454.	1.0	8
94	Fluorescence-based characterisation of selected edible insect species: Excitation emission matrix (EEM) and parallel factor (PARAFAC) analysis. Current Research in Food Science, 2021, 4, 862-872.	2.7	7
95	Impact of plasma processed air (PPA) on phenolic model systems: Suggested mechanisms and relevance for food applications. Innovative Food Science and Emerging Technologies, 2020, 64, 102432.	2.7	5
96	Reduce and refine: Plasma treated water vs conventional disinfectants for conveyor-belt cleaning in sustainable food-production lines. Journal of Applied Physics, 2021, 129, .	1.1	5
97	Cold atmospheric pressure plasma inactivation of dairy associated planktonic cells of Listeria monocytogenes and Staphylococcus aureus. LWT - Food Science and Technology, 2021, 146, 111452.	2.5	5
98	Insects as food in Europe. Journal of Insects As Food and Feed, 2019, 5, 1.	2.1	4
99	A Molecular Survey of Bacterial Species in the Guts of Black Soldier Fly Larvae (Hermetia illucens) Reared on Two Urban Organic Waste Streams in Kenya. Frontiers in Microbiology, 2021, 12, 687103.	1.5	4
100	High pressure treatment of liquid whole egg and advantages of low temperature application. High Pressure Research, 2000, 19, 131-136.	0.4	3
101	Direct Evidence for a Radial Gradient in Age of the Apple Fruit Cuticle. Frontiers in Plant Science, 2021, 12, 730837.	1.7	3
102	Plasma-Assisted Combination Processes. , 2021, , 667-681.		1
103	Plasma Application and Food Properties. , 2021, , 572-588.		0
104	Utilising Cool Plasma Processing for the Modification of Food Surface Functionality., 2019,, 650-655.		0
105	Utilising Cool Plasma Processing for the Modification of Food Surface Functionality., 2019,,.		0