Li-Heng Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5652982/publications.pdf

Version: 2024-02-01

471509 526287 2,554 25 17 27 citations h-index g-index papers 28 28 28 3978 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia. Science, 2012, 337, 937-941.	12.6	649
2	Mobility of Nonsticky Nanoparticles in Polymer Liquids. Macromolecules, 2011, 44, 7853-7863.	4.8	307
3	Tough Selfâ€Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks. Advanced Materials, 2017, 29, 1702616.	21.0	304
4	Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. Journal of Clinical Investigation, 2014, 124, 3047-3060.	8.2	272
5	Hopping Diffusion of Nanoparticles in Polymer Matrices. Macromolecules, 2015, 48, 847-862.	4.8	211
6	Soft Poly(dimethylsiloxane) Elastomers from Architectureâ€Driven Entanglement Free Design. Advanced Materials, 2015, 27, 5132-5140.	21.0	163
7	Oneâ€Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release. Angewandte Chemie - International Edition, 2016, 55, 13470-13474.	13.8	90
8	Graphene oxide induced crosslinking and reinforcement of elastomers. Composites Science and Technology, 2017, 144, 223-229.	7.8	85
9	Roles of mucus adhesion and cohesion in cough clearance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12501-12506.	7.1	79
10	Millimeter-Size Pickering Emulsions Stabilized with Janus Microparticles. Langmuir, 2019, 35, 4693-4701.	3.5	55
11	Ultrafast Nanofiltration through Large-Area Single-Layered Graphene Membranes. ACS Applied Materials & Interfaces, 2017, 9, 9239-9244.	8.0	54
12	A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors. Nature Communications, 2022, 13, .	12.8	39
13	Oneâ€Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release. Angewandte Chemie, 2016, 128, 13668-13672.	2.0	33
14	Template Synthesis and Magnetic Behavior of FeNi Alloy Nanotube Arrays. Chinese Journal of Chemical Physics, 2007, 20, 821-825.	1.3	31
15	Rapid isolation of antigen-specific B-cells using droplet microfluidics. RSC Advances, 2020, 10, 27006-27013.	3.6	30
16	Molecular Architecture Directs Linear–Bottlebrush–Linear Triblock Copolymers to Self-Assemble to Soft Reprocessable Elastomers. ACS Macro Letters, 2019, 8, 1528-1534.	4.8	28
17	Capillary transfer of soft films. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5210-5216.	7.1	27
18	Hidden in the mist no more: physical force in cell biology. Nature Methods, 2016, 13, 124-125.	19.0	18

#	ARTICLE	IF	CITATION
19	Three-Dimensional Printable, Extremely Soft, Stretchable, and Reversible Elastomers from Molecular Architecture-Directed Assembly. Chemistry of Materials, 2021, 33, 2436-2445.	6.7	16
20	Molecular understanding for large deformations of soft bottlebrush polymer networks. Soft Matter, 2020, 16, 6259-6264.	2.7	15
21	Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of <i>InÂVitro</i> Multicomponent Interpenetrating Cytoskeletal Networks. Physical Review Letters, 2021, 127, 108101.	7.8	15
22	Anomalous mechanics of Zn $\langle \sup 2+\langle \sup \rangle$ -modified fibrin networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
23	Self-Assembly of Flexible Linear–Semiflexible Bottlebrush–Flexible Linear Triblock Copolymers. Macromolecules, 2021, 54, 9361-9371.	4.8	8
24	Digital Assembly of Spherical Viscoelastic Bioâ€Ink Particles. Advanced Functional Materials, 2022, 32, 2109004.	14.9	6
25	Selfâ€Healing Materials: Tough Selfâ€Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks (Adv. Mater. 38/2017). Advanced Materials, 2017, 29, .	21.0	2