Andrew M Dacks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5652687/publications.pdf Version: 2024-02-01

ANDREW M DACKS

#	Article	IF	CITATIONS
1	Circadian Clocks: Mosquitoes Master the Dark Side ofÂthe Room. Current Biology, 2020, 30, R932-R934.	1.8	1
2	Serotonergic modulation of visual neurons in Drosophila melanogaster. PLoS Genetics, 2020, 16, e1009003.	1.5	13
3	Serotonergic modulation across sensory modalities. Journal of Neurophysiology, 2020, 123, 2406-2425.	0.9	19
4	The Wiring Logic of an Identified Serotonergic Neuron That Spans Sensory Networks. Journal of Neuroscience, 2020, 40, 6309-6327.	1.7	23
5	Serotonergic modulation of visual neurons in Drosophila melanogaster. , 2020, 16, e1009003.		0
6	Serotonergic modulation of visual neurons in Drosophila melanogaster. , 2020, 16, e1009003.		0
7	Serotonergic modulation of visual neurons in Drosophila melanogaster. , 2020, 16, e1009003.		0
8	Serotonergic modulation of visual neurons in Drosophila melanogaster. , 2020, 16, e1009003.		0
9	Local synaptic inputs support opposing, network-specific odor representations in a widely projecting modulatory neuron. ELife, 2019, 8, .	2.8	12
10	Flight motor networks modulate primary olfactory processing in the moth <i>Manduca sexta</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5588-5593.	3.3	14
11	Systematic Analysis of Transmitter Coexpression Reveals Organizing Principles of Local Interneuron Heterogeneity. ENeuro, 2018, 5, ENEURO.0212-18.2018.	0.9	10
12	Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170339.	1.2	10
13	Identified Serotonergic Modulatory Neurons Have Heterogeneous Synaptic Connectivity within the Olfactory System of <i>Drosophila</i> . Journal of Neuroscience, 2017, 37, 7318-7331.	1.7	36
14	Intrinsic and Extrinsic Neuromodulation of Olfactory Processing. Frontiers in Cellular Neuroscience, 2017, 11, 424.	1.8	42
15	A Flight Sensory-Motor to Olfactory Processing Circuit in the Moth Manduca sexta. Frontiers in Neural Circuits, 2016, 10, 5.	1.4	13
16	Consequences of degeneracy in network function. Current Opinion in Neurobiology, 2016, 41, 62-67.	2.0	33
17	Serotonergic Modulation Differentially Targets Distinct Network Elements within the Antennal Lobe of Drosophila melanogaster. Scientific Reports, 2016, 6, 37119.	1.6	29
18	The anatomical basis for modulatory convergence in the antennal lobe of <i>Manduca sexta</i> . Journal of Comparative Neurology, 2016, 524, 1859-1875.	0.9	9

ANDREW M DACKS

#	Article	IF	CITATIONS
19	A Tale of Transmission: Aeromonas veronii Activity within Leech-Exuded Mucus. Applied and Environmental Microbiology, 2016, 82, 2644-2655.	1.4	9
20	Hitchhiking of host biology by beneficial symbionts enhances transmission. Scientific Reports, 2014, 4, 5825.	1.6	10
21	Latent Modulation: A Basis for Non-Disruptive Promotion of Two Incompatible Behaviors by a Single Network State. Journal of Neuroscience, 2013, 33, 3786-3798.	1.7	33
22	Release of a single neurotransmitter from an identified interneuron coherently affects motor output on multiple time scales. Journal of Neurophysiology, 2013, 109, 2327-2334.	0.9	6
23	A Characterization of the Manduca sexta Serotonin Receptors in the Context of Olfactory Neuromodulation. PLoS ONE, 2013, 8, e69422.	1.1	16
24	Removal of Default State-Associated Inhibition during Repetition Priming Improves Response Articulation. Journal of Neuroscience, 2012, 32, 17740-17752.	1.7	21
25	Olfactory modulation by dopamine in the context of aversive learning. Journal of Neurophysiology, 2012, 108, 539-550.	0.9	36
26	The neurobiology of insect olfaction: Sensory processing in a comparative context. Progress in Neurobiology, 2011, 95, 427-447.	2.8	189
27	Local interneuron diversity in the primary olfactory center of the moth Manduca sexta. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 653-665.	0.7	39
28	The Organization of the Antennal Lobe Correlates Not Only with Phylogenetic Relationship, But Also Life History: A Basal Hymenopteran as Exemplar. Chemical Senses, 2011, 36, 209-220.	1.1	12
29	Histamineâ€immunoreactive local neurons in the antennal lobes of the hymenoptera. Journal of Comparative Neurology, 2010, 518, 2917-2933.	0.9	25
30	Visual Processing in the Central Bee Brain. Journal of Neuroscience, 2009, 29, 9987-9999.	1.7	89
31	Color processing in the medulla of the bumblebee (Apidae: <i>Bombus impatiens</i>). Journal of Comparative Neurology, 2009, 513, 441-456.	0.9	66
32	Serotonin Modulates Olfactory Processing in the Antennal Lobe of <i>Drosophila</i> . Journal of Neurogenetics, 2009, 23, 366-377.	0.6	94
33	The Processing of Color, Motion, and Stimulus Timing Are Anatomically Segregated in the Bumblebee Brain. Journal of Neuroscience, 2008, 28, 6319-6332.	1.7	112
34	The cloning of one putative octopamine receptor and two putative serotonin receptors from the tobacco hawkmoth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2006, 36, 741-747.	1.2	35
35	Phylogeny of a serotonin-immunoreactive neuron in the primary olfactory center of the insect brain. Journal of Comparative Neurology, 2006, 498, 727-746.	0.9	111
36	Octopamine-immunoreactive neurons in the brain and subesophageal ganglion of the hawkmothManduca sexta. Journal of Comparative Neurology, 2005, 488, 255-268.	0.9	54