Luisa Iommarini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5652362/publications.pdf

Version: 2024-02-01

60 papers

3,561 citations

186209
28
h-index

54 g-index

65 all docs 65 docs citations

65 times ranked 5636 citing authors

#	Article	IF	CITATIONS
1	Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9066-E9075.	3.3	502
2	OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes. Brain, 2008, 131, 338-351.	3.7	454
3	Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9001-9006.	3.3	256
4	Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy. Brain, 2014, 137, 335-353.	3.7	229
5	Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer. Frontiers in Oncology, 2017, 7, 286.	1.3	167
6	Syndromic parkinsonism and dementia associated with <scp><i>OPA</i></scp> <i>1</i> missense mutations. Annals of Neurology, 2015, 78, 21-38.	2.8	154
7	Cigarette toxicity triggers Leber's hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways. Cell Death and Disease, 2015, 6, e2021-e2021.	2.7	107
8	PGC- $1\hat{l}\pm\hat{l}^2$ induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Human Molecular Genetics, 2009, 18, 1805-1812.	1.4	99
9	Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Human Molecular Genetics, 2014, 23, 1453-1466.	1.4	96
10	A Mutation Threshold Distinguishes the Antitumorigenic Effects of the Mitochondrial Gene <i>MTND1</i> , an <i>Oncojanus</i> Function. Cancer Research, 2011, 71, 6220-6229.	0.4	90
11	Association of Optic Disc Size with Development and Prognosis of Leber's Hereditary Optic Neuropathy. , 2009, 50, 1666.		81
12	The Background of Mitochondrial DNA Haplogroup J Increases the Sensitivity of Leber's Hereditary Optic Neuropathy Cells to 2,5-Hexanedione Toxicity. PLoS ONE, 2009, 4, e7922.	1.1	76
13	Respiratory complex I is essential to induce a Warburg profile in mitochondria-defective tumor cells. Cancer & Metabolism, 2013, 1, 11.	2.4	75
14	Rare Primary Mitochondrial DNA Mutations and Probable Synergistic Variants in Leber's Hereditary Optic Neuropathy. PLoS ONE, 2012, 7, e42242.	1.1	73
15	Mitochondrial Optic Neuropathies: How Two Genomes may Kill the Same Cell Type?. Bioscience Reports, 2007, 27, 173-184.	1.1	70
16	Mitochondrial metabolism and energy sensing in tumor progression. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 582-590.	0.5	67
17	Rare mtDNA variants in Leber hereditary optic neuropathy families with recurrence of myoclonus. Neurology, 2008, 70, 762-770.	1.5	66
18	Targeting estrogen receptor \hat{I}^2 as preventive therapeutic strategy for Leber's hereditary optic neuropathy. Human Molecular Genetics, 2015, 24, ddv396.	1.4	62

#	Article	IF	CITATIONS
19	Complex I impairment in mitochondrial diseases and cancer: Parallel roads leading to different outcomes. International Journal of Biochemistry and Cell Biology, 2013, 45, 47-63.	1.2	59
20	An inherited mitochondrial DNA disruptive mutation shifts to homoplasmy in oncocytic tumor cells. Human Mutation, 2009, 30, 391-396.	1.1	55
21	Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nature Communications, 2019, 10, 903.	5.8	54
22	The multifaceted contribution of \hat{l} ±-ketoglutarate to tumor progression: An opportunity to exploit?. Seminars in Cell and Developmental Biology, 2020, 98, 26-33.	2.3	50
23	Peculiar combinations of individually non-pathogenic missense mitochondrial DNA variants cause low penetrance Leber's hereditary optic neuropathy. PLoS Genetics, 2018, 14, e1007210.	1.5	47
24	The cytochrome b p.278Y>C mutation causative of a multisystem disorder enhances superoxide production and alters supramolecular interactions of respiratory chain complexes. Human Molecular Genetics, 2013, 22, 2141-2151.	1.4	46
25	A Novel in-Frame 18-bp Microdeletion in <i>MT-CYB</i> Causes a Multisystem Disorder with Prominent Exercise Intolerance. Human Mutation, 2014, 35, 954-958.	1.1	38
26	A clinically complex form of dominant optic atrophy (OPA8) maps on chromosome 16. Human Molecular Genetics, 2011, 20, 1893-1905.	1.4	36
27	Mitochondrial Diseases Part I: Mouse models of OXPHOS deficiencies caused by defects in respiratory complex subunits or assembly factors. Mitochondrion, 2015, 21, 76-91.	1.6	36
28	Mutant MYO1F alters the mitochondrial network and induces tumor proliferation in thyroid cancer. International Journal of Cancer, 2018, 143, 1706-1719.	2.3	35
29	Gamma rays induce a p53-independent mitochondrial biogenesis that is counter-regulated by HIF1α. Cell Death and Disease, 2013, 4, e663-e663.	2.7	31
30	Tuning Cysteine Reactivity and Sulfenic Acid Stability by Protein Microenvironment in Glyceraldehyde-3-Phosphate Dehydrogenases of <i> Arabidopsis thaliana </i> . Antioxidants and Redox Signaling, 2016, 24, 502-517.	2.5	31
31	Targeting respiratory complex I to prevent the Warburg effect. International Journal of Biochemistry and Cell Biology, 2015, 63, 41-45.	1.2	28
32	Mitochondrial Diseases Part II: Mouse models of OXPHOS deficiencies caused by defects in regulatory factors and other components required for mitochondrial function. Mitochondrion, 2015, 22, 96-118.	1.6	23
33	Mice harbouring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity. Neurobiology of Disease, 2019, 124, 14-28.	2.1	23
34	A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme. International Journal of Biochemistry and Cell Biology, 2015, 63, 46-54.	1.2	22
35	Haplogroup J mitogenomes are the most sensitive to the pesticide rotenone: Relevance for human diseases. Neurobiology of Disease, 2018, 114, 129-139.	2.1	22
36	The Oncojanus Paradigm of Respiratory Complex I. Genes, 2018, 9, 243.	1.0	22

#	Article	IF	CITATIONS
37	Platinum-induced mitochondrial DNA mutations confer lower sensitivity to paclitaxel by impairing tubulin cytoskeletal organization. Human Molecular Genetics, 2017, 26, 2961-2974.	1.4	20
38	Cybrid studies establish the causal link between the mtDNA m.3890G>A/MT-ND1 mutation and optic atrophy with bilateral brainstem lesions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 445-452.	1.8	17
39	Mitochondrial complex I and cell death: a semi-automatic shotgun model. Cell Death and Disease, 2011, 2, e222-e222.	2.7	15
40	Genome-wide expression profiling and functional characterization of SCA28 lymphoblastoid cell lines reveal impairment in cell growth and activation of apoptotic pathways. BMC Medical Genomics, 2013, 6, 22.	0.7	14
41	The antioxidant function of Bcl-2 preserves cytoskeletal stability of cells with defective respiratory complex I. Cellular and Molecular Life Sciences, 2008, 65, 2943-2951.	2.4	13
42	Revisiting the issue of mitochondrial DNA content in optic mitochondriopathies. Neurology, 2012, 79, 1517-1519.	1.5	13
43	Unravelling the Effects of the Mutation m.3571insC/MT-ND1 on Respiratory Complexes Structural Organization. International Journal of Molecular Sciences, 2018, 19, 764.	1.8	13
44	NDUFS3 depletion permits complex I maturation and reveals TMEM126A/OPA7 as an assembly factor binding the ND4-module intermediate. Cell Reports, 2021, 35, 109002.	2.9	13
45	Mitochondrial Diseases Part III: Therapeutic interventions in mouse models of OXPHOS deficiencies. Mitochondrion, 2015, 23, 71-80.	1.6	10
46	Lithium and Not Acetoacetate Influences the Growth of Cells Treated with Lithium Acetoacetate. International Journal of Molecular Sciences, 2019, 20, 3104.	1.8	10
47	Analysis of the mitochondrial proteome of cybrid cells harbouring a truncative mitochondrial DNA mutation in respiratory complex I. Molecular BioSystems, 2014, 10, 1313.	2.9	8
48	A Humanized Bone Niche Model Reveals Bone Tissue Preservation Upon Targeting Mitochondrial Complex I in Pseudo-Orthotopic Osteosarcoma. Journal of Clinical Medicine, 2019, 8, 2184.	1.0	8
49	Respiratory Complex I dysfunction in cancer: from a maze of cellular adaptive responses to potential therapeutic strategies. FEBS Journal, 2022, 289, 8003-8019.	2.2	6
50	Mild phenotypes and proper supercomplex assembly in human cells carrying the homoplasmic m.15557GÂ>ÂA mutation in cytochrome <i>b</i> pene. Human Mutation, 2018, 39, 92-102.	1.1	5
51	A unique combination of rare mitochondrial ribosomal RNA variants affects the kinetics of complex I assembly. International Journal of Biochemistry and Cell Biology, 2016, 75, 117-122.	1.2	2
52	Dansyl acetyl trehalose: a novel tool to investigate the cellular fate of trehalose. RSC Advances, 2019, 9, 15350-15356.	1.7	2
53	Inducing respiratory complex I impairment elicits an increase in PGC1 \hat{l}_{\pm} in ovarian cancer. Scientific Reports, 2022, 12, 8020.	1.6	2
54	Alterations in the supramolecular interactions of respiratory chain complexes and enhanced superoxide production by the cytochrome b Y278C mutation which causes a multisystem disorder. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S139.	0.5	1

#	Article	IF	CITATIONS
55	Methods and models for functional studies on mtDNA mutations. , 2020, , 305-349.		1
56	Pathogenic Mitochondrial DNA Mutation Load Inversely Correlates with Malignant Features in Familial Oncocytic Parathyroid Tumors Associated with Hyperparathyroidism-Jaw Tumor Syndrome. Cells, 2021, 10, 2920.	1.8	1
57	Searching for genetic modifiers of Leber's hereditary optic neuropathy penetrance. Mitochondrion, 2012, 12, 572.	1.6	O
58	Targeting respiratory Complex I: A metabolic strategy to prevent tumor progression. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e115-e116.	0.5	0
59	Respirasome stabilizes respiratory Complex III and mitigates the detrimental effects of E271K change in cytochrome b. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e38-e39.	0.5	O
60	Biogenesis of NDUFS3-Less Complex I Indicates TMEM126A/OPA7 as an Assembly Factor of the ND4-Module. SSRN Electronic Journal, $0, , .$	0.4	0