Nonappa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5652210/publications.pdf

Version: 2024-02-01

98 papers

3,679 citations

136940 32 h-index 55 g-index

104 all docs

104 docs citations

104 times ranked 4598 citing authors

#	Article	IF	CITATIONS
1	Advanced Materials through Assembly of Nanocelluloses. Advanced Materials, 2018, 30, e1703779.	21.0	493
2	Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. Advanced Materials, 2021, 33, e2004349.	21.0	212
3	Protein Coating of DNA Nanostructures for Enhanced Stability and Immunocompatibility. Advanced Healthcare Materials, 2017, 6, 1700692.	7.6	166
4	Unlocking the potential of bile acids in synthesis, supramolecular/materials chemistry and nanoscience. Organic and Biomolecular Chemistry, 2008, 6, 657.	2.8	120
5	Cationic polymers for DNA origami coating $\hat{a}\in$ examining their binding efficiency and tuning the enzymatic reaction rates. Nanoscale, 2016, 8, 11674-11680.	5.6	109
6	Templateâ€Free Supracolloidal Selfâ€Assembly of Atomically Precise Gold Nanoclusters: From 2D Colloidal Crystals to Spherical Capsids. Angewandte Chemie - International Edition, 2016, 55, 16035-16038.	13.8	86
7	Aligning cellulose nanofibril dispersions for tougher fibers. Scientific Reports, 2017, 7, 11860.	3.3	79
8	Strain-Stiffening of Agarose Gels. ACS Macro Letters, 2019, 8, 670-675.	4.8	78
9	Selfâ€Assembly of Precision Noble Metal Nanoclusters: Hierarchical Structural Complexity, Colloidal Superstructures, and Applications. Small, 2021, 17, e2005718.	10.0	76
10	Cooperative colloidal self-assembly of metal-protein superlattice wires. Nature Communications, 2017, 8, 671.	12.8	73
11	Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements. Science Advances, 2019, 5, eaaw2541.	10.3	73
12	Subcomponent Selfâ€Assembly: A Quick Way to New Metallogels. Chemistry - A European Journal, 2013, 19, 12978-12981.	3.3	70
13	Cul-Mediated Cross-Coupling of Aryl Halides with Oximes:Â A Direct Access toO-Aryloximes. Organic Letters, 2007, 9, 2767-2770.	4.6	65
14	Phase transitions as intermediate steps in the formation of molecularly engineered protein fibers. Communications Biology, 2018, 1, 86.	4.4	59
15	Complexes of Magnetic Nanoparticles with Cellulose Nanocrystals as Regenerable, Highly Efficient, and Selective Platform for Protein Separation. Biomacromolecules, 2017, 18, 898-905.	5.4	57
16	Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods. Angewandte Chemie - International Edition, 2018, 57, 6522-6526.	13.8	57
17	Hydrogen Bonding Directed Colloidal Selfâ€Assembly of Nanoparticles into 2D Crystals, Capsids, and Supracolloidal Assemblies. Advanced Functional Materials, 2018, 28, 1704328.	14.9	53
18	Diversity in Itraconazole Cocrystals with Aliphatic Dicarboxylic Acids of Varying Chain Length. Crystal Growth and Design, 2013, 13, 4877-4884.	3.0	48

#	Article	IF	Citations
19	Self-Assembly of Electrostatic Cocrystals from Supercharged Fusion Peptides and Protein Cages. ACS Macro Letters, 2018, 7, 318-323.	4.8	47
20	Inverse Thermoreversible Mechanical Stiffening and Birefringence in a Methylcellulose/Cellulose Nanocrystal Hydrogel. Biomacromolecules, 2018, 19, 2795-2804.	5.4	47
21	Unraveling the packing pattern leading to gelation using SS NMR and X-ray diffraction: direct observation of the evolution of self-assembled fibers. Soft Matter, 2010, 6, 1748.	2.7	43
22	Highly Luminescent Gold Nanocluster Frameworks. Advanced Optical Materials, 2019, 7, 1900620.	7. 3	42
23	DNA origami directed 3D nanoparticle superlattice <i>via</i> electrostatic assembly. Nanoscale, 2019, 11, 4546-4551.	5.6	42
24	Bile acid–amino acid ester conjugates: gelation, structural properties, and thermoreversible solid to solid phase transition. Soft Matter, 2010, 6, 3789.	2.7	40
25	Cyclic dipeptides: catalyst/promoter-free, rapid and environmentally benign cyclization of free amino acids. Green Chemistry, 2011, 13, 1203.	9.0	40
26	Polymer brush guided templating on well-defined rod-like cellulose nanocrystals. Polymer Chemistry, 2018, 9, 1650-1657.	3.9	39
27	Crystalline Cyclophane–Protein Cage Frameworks. ACS Nano, 2018, 12, 8029-8036.	14.6	39
28	Design, synthesis and stimuli responsive gelation of novel stigmasterol–amino acid conjugates. Journal of Colloid and Interface Science, 2011, 361, 587-593.	9.4	38
29	Rapid self-healing and anion selectivity in metallosupramolecular gels assisted by fluorine–fluorine interactions. Dalton Transactions, 2017, 46, 7309-7316.	3.3	36
30	Retention of lysozyme activity by physical immobilization in nanocellulose aerogels and antibacterial effects. Cellulose, 2017, 24, 2837-2848.	4.9	36
31	Light-Triggered Reversible Supracolloidal Self-Assembly of Precision Gold Nanoclusters. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14569-14577.	8.0	36
32	Rod-Like Nanoparticles with Striped and Helical Topography. ACS Macro Letters, 2016, 5, 1185-1190.	4.8	35
33	Reversible Supracolloidal Selfâ€Assembly of Cobalt Nanoparticles to Hollow Capsids and Their Superstructures. Angewandte Chemie - International Edition, 2017, 56, 6473-6477.	13.8	34
34	Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductility. European Polymer Journal, 2019, 112, 334-345.	5.4	34
35	Studies on supramolecular gel formation using DOSY NMR. Magnetic Resonance in Chemistry, 2015, 53, 256-260.	1.9	33
36	Halogenation dictates the architecture of amyloid peptide nanostructures. Nanoscale, 2017, 9, 9805-9810.	5.6	33

#	Article	IF	CITATIONS
37	Polymer Nanowires with Highly Precise Internal Morphology and Topography. Journal of the American Chemical Society, 2018, 140, 12736-12740.	13.7	33
38	Simple esters of cholic acid as potent organogelators: direct imaging of the collapse of SAFINs. Soft Matter, 2007, 3, 1428.	2.7	32
39	Evidence of Weak Halogen Bonding: New Insights on Itraconazole and its Succinic Acid Cocrystal. Crystal Growth and Design, 2013, 13, 346-351.	3.0	31
40	Luminescent gold nanoclusters for bioimaging applications. Beilstein Journal of Nanotechnology, 2020, 11, 533-546.	2.8	31
41	Soft cellulose II nanospheres: sol–gel behaviour, swelling and material synthesis. Nanoscale, 2019, 11, 17773-17781.	5.6	30
42	A steroid-based gelator of A(LS)2 type: tuning gel properties by metal coordination. Soft Matter, 2012, 8, 7840.	2.7	29
43	Solid state NMR studies of gels derived from low molecular mass gelators. Soft Matter, 2016, 12, 6015-6026.	2.7	29
44	Self-Coacervation of a Silk-Like Protein and Its Use As an Adhesive for Cellulosic Materials. ACS Macro Letters, 2018, 7, 1120-1125.	4.8	29
45	DNAâ€Origamiâ€Templated Growth of Multilamellar Lipid Assemblies. Angewandte Chemie - International Edition, 2021, 60, 827-833.	13.8	29
46	Sustainable High Yield Route to Cellulose Nanocrystals from Bacterial Cellulose. ACS Sustainable Chemistry and Engineering, 2019, 7, 14384-14388.	6.7	28
47	Controllable coacervation of recombinantly produced spider silk protein using kosmotropic salts. Journal of Colloid and Interface Science, 2020, 560, 149-160.	9.4	28
48	Hierarchical Supramolecular Cross-Linking of Polymers for Biomimetic Fracture Energy Dissipating Sacrificial Bonds and Defect Tolerance under Mechanical Loading. ACS Macro Letters, 2017, 6, 210-214.	4.8	27
49	Efficient Encapsulation of Fluorinated Drugs in the Confined Space of Waterâ€Dispersible Fluorous Supraparticles. Angewandte Chemie - International Edition, 2017, 56, 16186-16190.	13.8	27
50	Synthesis, Characterization, Thermal and Antimicrobial studies of N-substituted Sulfanilamide derivatives. Journal of Molecular Structure, 2014, 1060, 280-290.	3.6	25
51	Phthalocyanine–Virus Nanofibers as Heterogeneous Catalysts for Continuousâ€Flow Photoâ€Oxidation Processes. Advanced Materials, 2019, 31, e1902582.	21.0	25
52	<i>In Situ</i> Generation of Chiroptically-Active Gold-Peptide Superstructures Promoted by Iodination. ACS Nano, 2019, 13, 2158-2166.	14.6	25
53	Luminescent Gold Nanoclusterâ€Methylcellulose Composite Optical Fibers with Low Attenuation Coefficient and High Photostability. Small, 2021, 17, e2005205.	10.0	25
54	Spermine amides of selected triterpenoid acids: dynamic supramolecular system formation influences the cytotoxicity of the drugs. Journal of Materials Chemistry B, 2020, 8, 484-491.	5.8	22

#	Article	IF	CITATIONS
55	Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization. Advanced Materials, 2021, 33, e2102658.	21.0	22
56	Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer. Nature Communications, 2021, 12, 6967.	12.8	22
57	Solid-State NMR, X-ray Diffraction, and Thermoanalytical Studies Towards the Identification, Isolation, and Structural Characterization of Polymorphs in Natural Bile Acids. Crystal Growth and Design, 2009, 9, 4710-4719.	3.0	21
58	Experimental and Simulation Study of the Solvent Effects on the Intrinsic Properties of Spherical Lignin Nanoparticles. Journal of Physical Chemistry B, 2021, 125, 12315-12328.	2.6	21
59	Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression. RSC Advances, 2016, 6, 89051-89056.	3.6	20
60	Near-Infrared Chiral Plasmonic Microwires through Precision Assembly of Gold Nanorods on Soft Biotemplates. Journal of Physical Chemistry C, 2021, 125, 3256-3267.	3.1	20
61	Supramolecular architectures formed by co-crystallization of bile acids and melamine. CrystEngComm, 2010, 12, 4304.	2.6	19
62	Templateâ€Free Supracolloidal Selfâ€Assembly of Atomically Precise Gold Nanoclusters: From 2D Colloidal Crystals to Spherical Capsids. Angewandte Chemie, 2016, 128, 16269-16272.	2.0	19
63	Hydrogen bonding asymmetric star-shape derivative of bile acid leads to supramolecular fibrillar aggregates that wrap into micrometer spheres. Soft Matter, 2016, 12, 7159-7165.	2.7	19
64	Bipyridine based metallogels: an unprecedented difference in photochemical and chemical reduction in the in situ nanoparticle formation. Dalton Transactions, 2017, 46, 2793-2802.	3.3	19
65	From Precision Colloidal Hybrid Materials to Advanced Functional Assemblies. Accounts of Chemical Research, 2022, 55, 1785-1795.	15.6	19
66	Silica–gentamicin nanohybrids: combating antibiotic resistance, bacterial biofilms, and in vivo toxicity. International Journal of Nanomedicine, 2018, Volume 13, 7939-7957.	6.7	18
67	Reversible Supracolloidal Selfâ€Assembly of Cobalt Nanoparticles to Hollow Capsids and Their Superstructures. Angewandte Chemie, 2017, 129, 6573-6577.	2.0	18
68	First Chemical Synthesis, Aggregation Behavior and Cholesterol Solubilization Properties of Pythocholic Acid and 161±-Hydroxycholic Acid. European Journal of Organic Chemistry, 2007, 2007, 3331-3336.	2.4	17
69	Engineered protein cages for selective heparin encapsulation. Journal of Materials Chemistry B, 2021, 9, 1272-1276.	5. 8	17
70	Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid–Spermine Conjugates. Langmuir, 2021, 37, 2693-2706.	3.5	16
71	Bile acid-derived mono- and diketalsâ€"synthesis, structural characterization and self-assembling properties. Organic and Biomolecular Chemistry, 2010, 8, 2784.	2.8	15
72	Hierarchical self-assembly from nanometric micelles to colloidal spherical superstructures. Polymer, 2017, 126, 177-187.	3.8	15

#	Article	IF	Citations
73	Atom transfer between precision nanoclusters and polydispersed nanoparticles: a facile route for monodisperse alloy nanoparticles and their superstructures. Nanoscale, 2020, 12, 22116-22128.	5.6	15
74	Infinite coordination polymer networks: metallogelation of aminopyridine conjugates and in situ silver nanoparticle formation. Soft Matter, 2019, 15, 442-451.	2.7	13
75	Janus-Type Dendrimers Based on Highly Branched Fluorinated Chains with Tunable Self-Assembly and ¹⁹ F Nuclear Magnetic Resonance Properties. Macromolecules, 0, , .	4.8	13
76	Coacervation of resilin fusion proteins containing terminal functionalities. Colloids and Surfaces B: Biointerfaces, 2018, 171, 590-596.	5.0	12
77	Shell-Isolated Assembly of Atomically Precise Nanoclusters on Gold Nanorods for Integrated Plasmonic-Luminescent Nanocomposites. Journal of Physical Chemistry B, 2022, 126, 1842-1851.	2.6	11
78	Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods. Angewandte Chemie, 2018, 130, 6632-6636.	2.0	10
79	Methylcellulose–Cellulose Nanocrystal Composites for Optomechanically Tunable Hydrogels and Fibers. Materials, 2021, 14, 5137.	2.9	10
80	Caffeine as a Gelator. Gels, 2016, 2, 9.	4.5	9
81	Cylindrical Zwitterionic Particles via Interpolyelectrolyte Complexation on Molecular Polymer Brushes. Macromolecular Rapid Communications, 2021, 42, e2000401.	3.9	9
82	Structural studies of five novel bile acid-4-aminopyridine conjugates. Steroids, 2012, 77, 1141-1151.	1.8	7
83	Self-healing, luminescent metallogelation driven by synergistic metallophilic and fluorine–fluorine interactions. Soft Matter, 2020, 16, 2795-2802.	2.7	7
84	Hexagonal Microparticles from Hierarchical Self-Organization of Chiral Trigonal Pd3L6 Macrotetracycles. Cell Reports Physical Science, 2021, 2, 100303.	5.6	7
85	Interference of Phosphate in Adsorption of Arsenate and Arsenite over Confined Metastable Two-Line Ferrihydrite and Magnetite. Journal of Physical Chemistry C, 2021, 125, 22502-22512.	3.1	7
86	Aging-Induced Structural Transition of Nanoscale Oleanolic Acid Amphiphiles and Selectivity against Gram-Positive Bacteria. ACS Applied Nano Materials, 2022, 5, 3799-3810.	5.0	7
87	Carboxymethyl Cellulose (CMC) Optical Fibers for Environment Sensing and Short-Range Optical Signal Transmission. ACS Applied Materials & Signal Transmission. ACS Applied Materials & Signal Transmission.	8.0	6
88	Facile synthesis of 5Î ² -cholane-sym-triazine conjugates starting from metformin and bile acid methyl esters: Liquid and solid state NMR characterization and single crystal structure of lithocholyl triazine. Journal of Molecular Structure, 2009, 936, 270-276.	3.6	5
89	Association of 2-acylaminopyridines and benzoic acids. Steric and electronic substituent effect studied by XRD, solution and solid-state NMR and calculations. Journal of Molecular Structure, 2013, 1054-1055, 157-163.	3.6	4
90	Lyotropic liquid crystals and linear supramolecular polymers of end-functionalized oligosaccharides. Chemical Communications, 2019, 55, 11739-11742.	4.1	4

#	Article	IF	CITATIONS
91	Synthesis, aggregation behavior and cholesterol solubilization studies of 16-epi-pythocholic acid $(3l\pm,12l\pm,16l^2$ -trihydroxy- $5l^2$ -cholan-24-oic acid). Steroids, 2010, 75, 506-512.	1.8	3
92	Efficient Encapsulation of Fluorinated Drugs in the Confined Space of Waterâ€Dispersible Fluorous Supraparticles. Angewandte Chemie, 2017, 129, 16404-16408.	2.0	2
93	Cellulose optical fiber for sensing applications. , 2022, , .		2
94	Titelbild: Efficient Encapsulation of Fluorinated Drugs in the Confined Space of Waterâ€Dispersible Fluorous Supraparticles (Angew. Chem. 51/2017). Angewandte Chemie, 2017, 129, 16309-16309.	2.0	1
95	Multinuclear and Solid State NMR of Gels. New Developments in NMR, 2020, , 200-227.	0.1	1
96	DNAâ€Origamiâ€Templated Growth of Multilamellar Lipid Assemblies. Angewandte Chemie, 2021, 133, 840-846.	2.0	1
97	N-{4-[(3-Methylphenyl)sulfamoyl]phenyl}benzamide. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2866-o2866.	0.2	0
98	Abstract 2966: Novel ex vivo model for ERα positive breast cancer., 2021,,.		0