
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5652112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Robust and scalable production of emulsion-templated microparticles in 3D-printed milli-fluidic device. Chemical Engineering Journal, 2022, 431, 133998.	6.6	9
2	Cyanideâ€Free Cyanation of sp ² and spâ€Carbon Atoms by an Oxazoleâ€Based Masked CN Source Using Flow Microreactors. Chemistry - A European Journal, 2022, 28, .	1.7	3
3	Chemical-Resistant Green Luminescent Concentrator-Based Photo-Microreactor via One-Touch Assembly of 3D-Printed Modules. ACS Sustainable Chemistry and Engineering, 2022, 10, 3951-3959.	3.2	4
4	Bimodal Lightâ€Harvesting Microfluidic System Using Upconversion Nanocrystals for Enhanced Flow Photocatalysis. Advanced Materials Technologies, 2022, 7, .	3.0	2
5	Scalable Subsecond Synthesis of Drug Scaffolds via Aryllithium Intermediates by Numbered-up 3D-Printed Metal Microreactors. ACS Central Science, 2022, 8, 43-50.	5.3	6
6	Cytocompatible asymmetrical coating for Janus carrier synthesis through capillary wetting and ascending. Journal of Colloid and Interface Science, 2022, 623, 54-62.	5.0	5
7	Laminar flow-assisted synthesis of amorphous ZIF-8-based nano-motor with enhanced transmigration for photothermal cancer therapy. Nanoscale, 2022, 14, 10835-10843.	2.8	3
8	Direct C–H metallation of tetrahydrofuran and application in flow. , 2022, 1, 558-564.		6
9	Continuous-flow Si–H functionalizations of hydrosilanes <i>via</i> sequential organolithium reactions catalyzed by potassium <i>tert</i> -butoxide. Green Chemistry, 2021, 23, 1193-1199.	4.6	14
10	One-flow upscaling neutralization of an organophosphonate-derived pesticide/nerve agent simulant to value-added chemicals in a novel Teflon microreactor platform. Reaction Chemistry and Engineering, 2021, 6, 1454-1461.	1.9	8
11	Flow parallel synthesizer for multiplex synthesis of aryl diazonium libraries via efficient parameter screening. Communications Chemistry, 2021, 4, .	2.0	15
12	Interwoven MOF-Coated Janus Cells as a Novel Carrier of Toxic Proteins. ACS Applied Materials & Interfaces, 2021, 13, 18545-18553.	4.0	19
13	Regioselective Synthesis of α-Functional Stilbenes via Precise Control of Rapid <i>cis</i> – <i>trans</i> Isomerization in Flow. Organic Letters, 2021, 23, 2904-2910.	2.4	6
14	Rapid Single-Step Growth of MOF Exoskeleton on Mammalian Cells for Enhanced Cytoprotection. ACS Biomaterials Science and Engineering, 2021, 7, 3075-3081.	2.6	9
15	Magnetically Guidable Proteinaceous Adhesive Microbots for Targeted Locoregional Therapeutics Delivery in the Highly Dynamic Environment of the Esophagus. Advanced Functional Materials, 2021, 31, 2104602.	7.8	11
16	Study on controllable enzymolysis by chiral capillary electrophoresis with an ultraviolet-visible responsive polymer membrane based l-asparaginase reactor. Talanta, 2021, 234, 122676.	2.9	5
17	Rapid exfoliation for few-layer enriched black phosphorus dispersion <i>via</i> a superhydrophobic silicon-nanowire-embedded microfluidic process. Green Chemistry, 2020, 22, 699-706.	4.6	8
18	Formation of gas-liquid slugs in millimeter-scale T-junctions – Slug size estimation framework. Chemical Engineering Journal, 2020, 385, 123492.	6.6	12

#	Article	IF	CITATIONS
19	Temperatureâ€Responsive Janus Particles as Microsurfactants for Onâ€Demand Coalescence of Emulsions. Small, 2020, 16, e2005159.	5.2	18
20	Integrated Synthesis Using Isothiocyanate-Substituted Aryllithiums by Flow Chemistry. Synlett, 2020, 31, 1899-1902.	1.0	5
21	Superhydrophobic Coatings: Wetâ€5tyle Superhydrophobic Antifogging Coatings for Optical Sensors (Adv. Mater. 34/2020). Advanced Materials, 2020, 32, 2070256.	11.1	0
22	Janus Particles: Temperatureâ€Responsive Janus Particles as Microsurfactants for Onâ€Demand Coalescence of Emulsions (Small 49/2020). Small, 2020, 16, 2070267.	5.2	0
23	Simultaneous Monitoring of Temperature and Ca ²⁺ Concentration Variation by Fluorescent Polymer during Intracellular Heat Production. Analytical Chemistry, 2020, 92, 8579-8583.	3.2	22
24	On-chip electroporation system of Polyimide film with sheath flow design for efficient delivery of molecules into microalgae. Journal of Industrial and Engineering Chemistry, 2020, 88, 159-166.	2.9	7
25	Ultrafast synthesis of 2-(benzhydrylthio)benzo[d]oxazole, an antimalarial drug, via an unstable lithium thiolate intermediate in a capillary microreactor. Reaction Chemistry and Engineering, 2020, 5, 849-852.	1.9	6
26	Assessing the impact of deviations in optimized multistep flow synthesis on the scale-up. Reaction Chemistry and Engineering, 2020, 5, 838-848.	1.9	7
27	Synthesis of <i>in Situ</i> Microphase-Separated Organic–Inorganic Block Polymer Precursors to 3D-Continuous Mesoporous SiC-based Ceramic Monoliths. ACS Applied Polymer Materials, 2020, 2, 2802-2809.	2.0	7
28	Wet‣tyle Superhydrophobic Antifogging Coatings for Optical Sensors. Advanced Materials, 2020, 32, e2002710.	11.1	74
29	Continuous-flow photo-induced decarboxylative annulative access to fused imidazole derivatives <i>via</i> a microreactor containing immobilized ruthenium. Green Chemistry, 2020, 22, 1565-1571.	4.6	19
30	Compact reaction-module on a pad for scalable flow-production of organophosphates as drug scaffolds. Lab on A Chip, 2020, 20, 973-978.	3.1	13
31	Hydrophobic MOFs@Metal Nanoparticles@COFs for Interfacially Confined Photocatalysis with High Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 20589-20595.	4.0	61
32	3D nanoweb-like zeolitic imidazole framework in a microfluidic system for catalytic applications. Reaction Chemistry and Engineering, 2020, 5, 1129-1134.	1.9	1
33	A platform for accelerated continuous-flow radical polymerization of acrylates and styrene with copper-wire threads. Reaction Chemistry and Engineering, 2019, 4, 1854-1860.	1.9	2
34	Reaction-volume dependent chemistry of highly selective photocatalytic reduction of nitrobenzene. Reaction Chemistry and Engineering, 2019, 4, 1752-1756.	1.9	11
35	From <i>p</i> â€Xylene to Ibuprofen in Flow: Three‣tep Synthesis by a Unified Sequence of Chemoselective Câ^'H Metalations. Chemistry - A European Journal, 2019, 25, 11641-11645.	1.7	25
36	Robust Production of Wellâ€Controlled Microdroplets in a 3Dâ€Printed Chimneyâ€Shaped Milliâ€Fluidic Device. Advanced Materials Technologies, 2019, 4, 1900457.	3.0	16

#	Article	IF	CITATIONS
37	Enhanced Controllability of Fries Rearrangements Using Highâ€Resolution 3Dâ€Printed Metal Microreactor with Circular Channel. Small, 2019, 15, e1905005.	5.2	20
38	Magnetically Actuated SiCNâ€Based Ceramic Microrobot for Guided Cell Delivery. Advanced Healthcare Materials, 2019, 8, e1900739.	3.9	29
39	A numbering-up metal microreactor for the high-throughput production of a commercial drug by copper catalysis. Lab on A Chip, 2019, 19, 3535-3542.	3.1	46
40	3D-printed monolithic SiCN ceramic microreactors from a photocurable preceramic resin for the high temperature ammonia cracking process. Reaction Chemistry and Engineering, 2019, 4, 1393-1399.	1.9	38
41	Photocatalysis in a multi-capillary assembly microreactor: toward up-scaling the synthesis of 2H-indazoles as drug scaffolds. Reaction Chemistry and Engineering, 2019, 4, 1466-1471.	1.9	23
42	Continuousâ€Flow Visible Light Organophotocatalysis for Direct Arylation of 2 <i>H</i> â€Indazoles: Fast Access to Drug Molecules. ChemSusChem, 2019, 12, 2581-2586.	3.6	39
43	Poreâ€Surface Engineering by Decorating Metalâ€Oxo Nodes with Phenylsilane to Give Versatile Superâ€Hydrophobic Metal–Organic Frameworks (MOFs). Angewandte Chemie - International Edition, 2019, 58, 7405-7409.	7.2	60
44	Poreâ€Surface Engineering by Decorating Metalâ€Oxo Nodes with Phenylsilane to Give Versatile Superâ€Hydrophobic Metal–Organic Frameworks (MOFs). Angewandte Chemie, 2019, 131, 7483-7487.	1.6	16
45	Synthesis of ficin-protected AuNCs in a droplet-based microreactor for sensing serum ferric ions. Talanta, 2019, 200, 547-552.	2.9	12
46	Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nature Communications, 2019, 10, 940.	5.8	349
47	Biocompatible Microrobots: Magnetically Actuated SiCNâ€Based Ceramic Microrobot for Guided Cell Delivery (Adv. Healthcare Mater. 21/2019). Advanced Healthcare Materials, 2019, 8, 1970085.	3.9	2
48	Integrated Microfluidic Photo-Flow Process (μ-PFP) for Direct Upconversion of Exhaust Gas to Value-Added Chemicals. ACS Sustainable Chemistry and Engineering, 2019, 7, 19605-19611.	3.2	8
49	Fast‣ynthesis of αâ€Phosphonyloxy Ketones as Drug Scaffolds in a Capillary Microreactor. European Journal of Organic Chemistry, 2019, 2019, 7730-7734.	1.2	1
50	Versatile Processing of Metal–Organic Framework–Fluoropolymer Composite Inks with Chemical Resistance and Sensor Applications. ACS Applied Materials & Interfaces, 2019, 11, 4385-4392.	4.0	29
51	Air-water interfacial fluidic sonolysis in superhydrophobic silicon-nanowire-embedded system for fast water treatment. Chemical Engineering Journal, 2019, 358, 1594-1600.	6.6	13
52	Effective and uniform cooling on a porous micro-structured surface with visualization of liquid/vapor interface. International Journal of Heat and Mass Transfer, 2019, 128, 1114-1124.	2.5	4
53	Direct Synthesis of a Covalently Selfâ€Assembled Peptide Nanogel from a Tyrosineâ€Rich Peptide Monomer and Its Biomineralized Hybrids. Angewandte Chemie - International Edition, 2018, 57, 5630-5634.	7.2	33
54	Direct Synthesis of a Covalently Selfâ€Assembled Peptide Nanogel from a Tyrosineâ€Rich Peptide Monomer and Its Biomineralized Hybrids. Angewandte Chemie, 2018, 130, 5732-5736.	1.6	6

#	Article	IF	CITATIONS
55	Direct Arylâ€Aryl Coupling without Preâ€Functionalization Enabled by Excessive Oxidation of Twoâ€Electron Ag(I)/Ag(III) Catalyst. Advanced Synthesis and Catalysis, 2018, 360, 2032-2042.	2.1	5
56	Metal Doped Core–Shell Metalâ€Organic Frameworks@Covalent Organic Frameworks (MOFs@COFs) Hybrids as a Novel Photocatalytic Platform. Advanced Functional Materials, 2018, 28, 1707110.	7.8	188
57	Facile Nondestructive Assembly of Tyrosineâ€Rich Peptide Nanofibers as a Biological Glue for Multicomponentâ€Based Nanoelectrode Applications. Advanced Functional Materials, 2018, 28, 1705729.	7.8	18
58	Control of tandem isomerizations: flow-assisted reactions of <i>o</i> -lithiated aryl benzyl ethers. Chemical Communications, 2018, 54, 547-550.	2.2	20
59	Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique. NPG Asia Materials, 2018, 10, e456-e456.	3.8	38
60	A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems. Lab on A Chip, 2018, 18, 1250-1258.	3.1	28
61	Highly efficient and continuous production of few-layer black phosphorus nanosheets and quantum dots via acoustic-microfluidic process. Chemical Engineering Journal, 2018, 333, 336-342.	6.6	21
62	Indirect fabrication of versatile 3D microfluidic device by a rotating plate combined 3D printing system. RSC Advances, 2018, 8, 37693-37699.	1.7	2
63	Flow-Assisted Switchable Catalysis of Metal Ions in a Microenvelope System Embedded with Core–Shell Polymers. ACS Applied Materials & Interfaces, 2018, 10, 43104-43111.	4.0	8
64	Metal-organic framework patterns and membranes with heterogeneous pores for flow-assisted switchable separations. Nature Communications, 2018, 9, 3968.	5.8	73
65	Inorganic Polymer Micropillarâ€Based Solution Shearing of Largeâ€Area Organic Semiconductor Thin Films with Pillar‧izeâ€Đependent Crystal Size. Advanced Materials, 2018, 30, e1800647.	11.1	24
66	Towards Versatile Continuousâ€Flow Chemistry and Process Technology Via New Conceptual Microreactor Systems. Bulletin of the Korean Chemical Society, 2018, 39, 757-772.	1.0	27
67	Solution Shearing: Inorganic Polymer Micropillar-Based Solution Shearing of Large-Area Organic Semiconductor Thin Films with Pillar-Size-Dependent Crystal Size (Adv. Mater. 29/2018). Advanced Materials, 2018, 30, 1870216.	11.1	2
68	Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under N-limitation. Algal Research, 2017, 23, 178-185.	2.4	80
69	Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow. Nature Communications, 2017, 8, 14676.	5.8	60
70	Emerging microreaction systems based on 3D printing techniques and separation technologies. Journal of Flow Chemistry, 2017, 7, 72-81.	1.2	26
71	Hydrolytic conversion of preceramic polymers into silicate glass coatings with different wettability. Journal of Sol-Gel Science and Technology, 2017, 81, 11-20.	1.1	1
72	Rücktitelbild: Covalent Self-Assembly and One-Step Photocrosslinking of Tyrosine-Rich Oligopeptides to Form Diverse Nanostructures (Angew. Chem. 24/2016). Angewandte Chemie, 2016, 128, 7122-7122.	1.6	0

#	Article	IF	CITATIONS
73	Recent advances for serial processes of hazardous chemicals in fully integrated microfluidic systems. Korean Journal of Chemical Engineering, 2016, 33, 2253-2267.	1.2	50
74	Direct Fabrication of Freeâ€Standing MOF Superstructures with Desired Shapes by Microâ€Confined Interfacial Synthesis. Angewandte Chemie - International Edition, 2016, 55, 7116-7120.	7.2	41
75	Flowâ€Assisted Synthesis of [10]Cycloparaphenylene through Serial Microreactions under Mild Conditions. Angewandte Chemie, 2016, 128, 1444-1448.	1.6	8
76	Heat Transfer: Enhanced Boiling Heat Transfer Performance on Microstructured Silicate Glass Surfaces Derived from Inorganic Polymerâ€Based Soft Lithography (Adv. Mater. Interfaces 20/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	0
77	Ultrasound-mediated intracellular delivery of fluorescent dyes and DNA into microalgal cells. Algal Research, 2016, 15, 210-216.	2.4	8
78	Innenrücktitelbild: Flowâ€Assisted Synthesis of [10]Cycloparaphenylene through Serial Microreactions under Mild Conditions (Angew. Chem. 4/2016). Angewandte Chemie, 2016, 128, 1591-1591.	1.6	0
79	Submillisecond organic synthesis: Outpacing Fries rearrangement through microfluidic rapid mixing. Science, 2016, 352, 691-694.	6.0	206
80	Reversed Janus Micro/Nanomotors with Internal Chemical Engine. ACS Nano, 2016, 10, 8751-8759.	7.3	108
81	Enhanced Boiling Heat Transfer Performance on Microstructured Silicate Glass Surfaces Derived from Inorganic Polymerâ€Based Soft Lithography. Advanced Materials Interfaces, 2016, 3, 1600507.	1.9	5
82	Micro-total envelope system with silicon nanowire separator for safe carcinogenic chemistry. Nature Communications, 2016, 7, 10741.	5.8	26
83	Covalent Selfâ€Assembly and Oneâ€Step Photocrosslinking of Tyrosineâ€Rich Oligopeptides to Form Diverse Nanostructures. Angewandte Chemie, 2016, 128, 7039-7042.	1.6	7
84	Flowâ€Assisted Synthesis of [10]Cycloparaphenylene through Serial Microreactions under Mild Conditions. Angewandte Chemie - International Edition, 2016, 55, 1422-1426.	7.2	24
85	Covalent Selfâ€Assembly and Oneâ€Step Photocrosslinking of Tyrosineâ€Rich Oligopeptides to Form Diverse Nanostructures. Angewandte Chemie - International Edition, 2016, 55, 6925-6928.	7.2	46
86	Multifaceted thermoresponsive poly(N-vinylcaprolactam) coupled with carbon dots for biomedical applications. Materials Science and Engineering C, 2016, 61, 492-498.	3.8	42
87	Superamphiphobic Silicon-Nanowire-Embedded Microsystem and In-Contact Flow Performance of Gas and Liquid Streams. ACS Nano, 2016, 10, 1156-1162.	7.3	23
88	Multilayered film microreactors fabricated by a one-step thermal bonding technique with high reproducibility and their applications. Lab on A Chip, 2016, 16, 977-983.	3.1	13
89	Synthesis and properties of UV curable polyvinylsilazane as a precursor for microâ€structuring. Polymers for Advanced Technologies, 2015, 26, 245-249.	1.6	11
90	Digital Microfluidic Approach for Efficient Electroporation with High Productivity: Transgene Expression of Microalgae without Cell Wall Removal. Analytical Chemistry, 2015, 87, 6592-6599.	3.2	44

#	Article	IF	CITATIONS
91	Rapid and Automated Quantification of Microalgal Lipids on a Spinning Disc. Analytical Chemistry, 2015, 87, 7865-7871.	3.2	17
92	One-flow syntheses of diverse heterocyclic furan chemicals directly from fructose via tandem transformation platform. NPG Asia Materials, 2015, 7, e173-e173.	3.8	51
93	Nano-photocatalysts in microfluidics, energy conversion and environmental applications. Lab on A Chip, 2015, 15, 2352-2356.	3.1	49
94	Ratiometric Fluorescent Polymeric Thermometer for Thermogenesis Investigation in Living Cells. Analytical Chemistry, 2015, 87, 10535-10541.	3.2	51
95	Heterogeneous PdAg alloy catalyst for selective methylation of aromatic amines with formic acid under an additive-free and solvothermal one-pot condition. NPG Asia Materials, 2015, 7, e222-e222.	3.8	26
96	One-Pot Defunctionalization of Lignin-Derived Compounds by Dual-Functional Pd ₅₀ Ag ₅₀ /Fe ₃ O ₄ /N-rGO Catalyst. ACS Catalysis, 2015, 5, 6964-6972.	5.5	62
97	Bioactive MIL-88A Framework Hollow Spheres via Interfacial Reaction In-Droplet Microfluidics for Enzyme and Nanoparticle Encapsulation. Chemistry of Materials, 2015, 27, 7903-7909.	3.2	121
98	Chemical fixation of carbon dioxide by copper catalyzed multicomponent reactions for oxazolidinedione syntheses. Green Chemistry, 2015, 17, 1404-1407.	4.6	30
99	Integrated Oneâ€Flow Synthesis of Heterocyclic Thioquinazolinones through Serial Microreactions with Two Organolithium Intermediates. Angewandte Chemie - International Edition, 2015, 54, 1877-1880.	7.2	66
100	Protein-based soft micro-optics fabricated by femtosecond laser direct writing. Light: Science and Applications, 2014, 3, e129-e129.	7.7	133
101	A microfluidic perfusion platform for cultivation and screening study of motile microalgal cells. Biomicrofluidics, 2014, 8, 024113.	1.2	13
102	Chitosanâ€Microreactor: A Versatile Approach for Heterogeneous Organic Synthesis in Microfluidics. ChemSusChem, 2014, 7, 1864-1869.	3.6	27
103	Eco-efficient preparation of a N-doped graphene equivalent and its application to metal free selective oxidation reaction. Green Chemistry, 2014, 16, 3024-3030.	4.6	34
104	Continuous flow synthesis of toxic ethyl diazoacetate for utilization in an integrated microfluidic system. Green Chemistry, 2014, 16, 116-120.	4.6	70
105	Whole ceramic-like microreactors from inorganic polymers for high temperature or/and high pressure chemical syntheses. Lab on A Chip, 2014, 14, 779-786.	3.1	11
106	Three-dimensional flash flow microreactor for scale-up production of monodisperse PEG–PLGA nanoparticles. Lab on A Chip, 2014, 14, 3987-3992.	3.1	44
107	Continuous Recycling of Homogeneous Pd/Cu Catalysts for Cross-Coupling Reactions. Organic Letters, 2014, 16, 3974-3977.	2.4	22
108	A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications. Lab on A Chip, 2014, 14, 4270-4276.	3.1	19

#	Article	IF	CITATIONS
109	A pressure-tolerant polymer microfluidic device fabricated by the simultaneous solidification-bonding method and flash chemistry application. Lab on A Chip, 2014, 14, 4263-4269.	3.1	17
110	Continuous-Flow Synthesis of Functional Carbonaceous Particles from Biomass under Hydrothermal Carbonization. Journal of Flow Chemistry, 2014, 4, 195-199.	1.2	5
111	Microfluidic Approach toward Continuous and Ultrafast Synthesis of Metal–Organic Framework Crystals and Hetero Structures in Confined Microdroplets. Journal of the American Chemical Society, 2013, 135, 14619-14626.	6.6	294
112	Dynamically tunable nanoparticle engineering enabled by short contact-time microfluidic synthesis with a reactive gas. RSC Advances, 2013, 3, 2897.	1.7	29
113	Novel 2D periodic arrays of carbon microholes by nanosphere lithography. Materials Letters, 2013, 111, 71-74.	1.3	Ο
114	Polyvinylsilazane layer coating and its application in poly(dimethylsiloxane) microchip electrophoresis. Microchemical Journal, 2013, 110, 753-757.	2.3	11
115	Safe Use of a Toxic Compound: Heterogeneous OsO ₄ Catalysis in a Nanobrush Polymer Microreactor. Angewandte Chemie - International Edition, 2013, 52, 6735-6738.	7.2	87
116	Odorless Isocyanide Chemistry: An Integrated Microfluidic System for a Multistep Reaction Sequence. Angewandte Chemie - International Edition, 2013, 52, 7564-7568.	7.2	101
117	Synthesis of hierarchically porous zeolite A crystals with uniform particle size in a droplet microreactor. RSC Advances, 2012, 2, 5323.	1.7	38
118	Efficient photosensitized oxygenations in phase contact enhanced microreactors. Lab on A Chip, 2011, 11, 1941.	3.1	85
119	A microfluidic system incorporated with peptide/Pd nanowires for heterogeneous catalytic reactions. Lab on A Chip, 2011, 11, 378-380.	3.1	47
120	Practical approach for macroporous structure embedded microfluidic system and the catalytic microchemical application. Lab on A Chip, 2011, 11, 57-62.	3.1	22
121	Direct preparation of mesoporous carbon by pyrolysis of poly(acrylonitrile-b-methylmethacrylate) diblock copolymer. Journal of Materials Chemistry, 2011, 21, 14226.	6.7	32
122	Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab on A Chip, 2011, 11, 100-103.	3.1	139
123	Continuous Inâ€Situ Generation, Separation, and Reaction of Diazomethane in a Dualâ€Channel Microreactor. Angewandte Chemie - International Edition, 2011, 50, 5952-5955.	7.2	132
124	Innentitelbild: Monolithic and Flexible Polyimide Film Microreactors for Organic Microchemical Applications Fabricated by Laser Ablation (Angew. Chem. 39/2010). Angewandte Chemie, 2010, 122, 7064-7064.	1.6	0
125	Monolithic and Flexible Polyimide Film Microreactors for Organic Microchemical Applications Fabricated by Laser Ablation. Angewandte Chemie - International Edition, 2010, 49, 7063-7067.	7.2	65
126	Inside Cover: Monolithic and Flexible Polyimide Film Microreactors for Organic Microchemical Applications Fabricated by Laser Ablation (Angew. Chem. Int. Ed. 39/2010). Angewandte Chemie - International Edition, 2010, 49, 6910-6910.	7.2	1

#	Article	IF	CITATIONS
127	Dual-Channel Microreactor for Gasâ^'Liquid Syntheses. Journal of the American Chemical Society, 2010, 132, 10102-10106.	6.6	90
128	Novel inorganic polymer derived microreactors for organic microchemistry applications. Lab on A Chip, 2008, 8, 1454.	3.1	49
129	Fabrication of SiC-Based Ceramic Microstructures from Preceramic Polymers with Sacrificial Templates and Lithographic Techniques-A Review. Journal of the Ceramic Society of Japan, 2006, 114, 473-479.	1.3	38
130	Properties of Boron Nitride (B _{<i>x</i>} N _{<i>y</i>}) Films Produced by the Spin oating Process of Polyborazine. Journal of the American Ceramic Society, 2000, 83, 2681-2683.	1.9	64
131	Synthesis and characterization of poly(aminoborane) as a new boron nitride precursor. Polymers for Advanced Technologies, 1999, 10, 702-712.	1.6	101
132	Synthesis and characterization of poly(aminoborane) as a new boron nitride precursor. , 1999, 10, 702.		4