
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5651980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Chlamydia pecorum</i> –Induced Arthritis in Experimentally and Naturally Infected Sheep. Veterinary Pathology, 2021, 58, 346-360.	0.8	7
2	The trends of human dirofilariasis in Croatia: Yesterday – Today – Tomorrow. One Health, 2020, 10, 100153.	1.5	10
3	Recent history of psittacosis in Australia: expanding our understanding of the epidemiology of this important globally distributed zoonotic disease. Internal Medicine Journal, 2020, 50, 246-249.	0.5	14
4	New insights into chlamydial zoonoses. Microbiology Australia, 2020, 41, 14.	0.1	5
5	Detection of <i>Chlamydiaceae</i> in ocular swabs from Australian preâ€export feedlot sheep. Australian Veterinary Journal, 2019, 97, 401-403.	0.5	14
6	Populationâ€scale treatment informs solutions for control of environmentally transmitted wildlife disease. Journal of Applied Ecology, 2019, 56, 2363-2375.	1.9	22
7	Chlamydial infection and onâ€farm risk factors in dairy cattle herds in South East Queensland. Australian Veterinary Journal, 2019, 97, 505-508.	0.5	8
8	The impact of human activities on Australian wildlife. PLoS ONE, 2019, 14, e0206958.	1.1	61
9	Chlamydia pecorum prevalence in South Australian koala (Phascolarctos cinereus) populations: Identification and modelling of a population free from infection. Scientific Reports, 2019, 9, 6261.	1.6	23
10	Detection of a range of genetically diverse chlamydiae in Australian domesticated and wild ungulates. Transboundary and Emerging Diseases, 2019, 66, 1132-1137.	1.3	16
11	In vitro analysis of genetically distinct Chlamydia pecorum isolates reveals key growth differences in mammalian epithelial and immune cells. Veterinary Microbiology, 2019, 232, 22-29.	0.8	10
12	Identification of A Novel Picorna-Like Virus, Burpengary Virus, that is Negatively Associated with Chlamydial Disease in the Koala. Viruses, 2019, 11, 211.	1.5	6
13	Mini Review: Antimicrobial Control of Chlamydial Infections in Animals: Current Practices and Issues. Frontiers in Microbiology, 2019, 10, 113.	1.5	33
14	Seroprevalence of vector-borne pathogens in dogs from Croatia. Parasitology Research, 2019, 118, 347-352.	0.6	11
15	New evidence for domesticated animals as reservoirs of Chlamydia-associated community-acquired pneumonia. Clinical Microbiology and Infection, 2019, 25, 131-132.	2.8	10
16	Multilocus Sequence Typing (MLST) of Chlamydiales. Methods in Molecular Biology, 2019, 2042, 69-86.	0.4	8
17	The limitations of commercial serological assays for detection of chlamydial infections in Australian livestock. Journal of Medical Microbiology, 2019, 68, 627-632.	0.7	11
18	Prevalence and clinical significance of koala retrovirus in two South Australian koala (Phascolarctos cinereus) populations. Journal of Medical Microbiology, 2019, 68, 1072-1080.	0.7	20

#	Article	IF	CITATIONS
19	Koala immunology and infectious diseases: How much can the koala bear?. Developmental and Comparative Immunology, 2018, 82, 177-185.	1.0	12
20	Understanding the health and production impacts of endemic Chlamydia pecorum infections in lambs. Veterinary Microbiology, 2018, 217, 90-96.	0.8	16
21	Molecular evidence to suggest pigeon-type Chlamydia psittaci in association with an equine foal loss. Transboundary and Emerging Diseases, 2018, 65, 911-915.	1.3	22
22	Comparative diagnostics reveals PCR assays on skin scrapings is the most reliable method to detect Sarcoptes scabiei infestations. Veterinary Parasitology, 2018, 251, 119-124.	0.7	23
23	Characterization of the In Vitro Chlamydia pecorum Response to Gamma Interferon. Infection and Immunity, 2018, 86, .	1.0	11
24	A Review on Chlamydial Diseases in Animals: Still a Challenge for Pathologists?. Veterinary Pathology, 2018, 55, 374-390.	0.8	112
25	Transcriptome sequencing of the long-nosed bandicoot (Perameles nasuta) reveals conservation and innovation of immune genes in the marsupial order Peramelemorphia. Immunogenetics, 2018, 70, 327-336.	1.2	3
26	Characterisation of MHC class I genes in the koala. Immunogenetics, 2018, 70, 125-133.	1.2	15
27	Chlamydia pecorum gastrointestinal tract infection associations with urogenital tract infections in the koala (Phascolarctos cinereus). PLoS ONE, 2018, 13, e0206471.	1.1	18
28	Cloacal and Ocular Microbiota of the Endangered Australian Northern Quoll. Microorganisms, 2018, 6, 68.	1.6	5
29	Metagenomic Analysis of Fish-Associated Ca. Parilichlamydiaceae Reveals Striking Metabolic Similarities to the Terrestrial Chlamydiaceae. Genome Biology and Evolution, 2018, 10, 2587-2595.	1.1	5
30	Epitheliocystis in fish: An emerging aquaculture disease with a global impact. Transboundary and Emerging Diseases, 2018, 65, 1436-1446.	1.3	52
31	Adaptation and conservation insights from the koala genome. Nature Genetics, 2018, 50, 1102-1111.	9.4	163
32	An epizootic of <i>Chlamydia psittaci</i> equine reproductive loss associated with suspected spillover from native Australian parrots. Emerging Microbes and Infections, 2018, 7, 1-13.	3.0	48
33	<i>Chlamydia pecorum</i> in Joint Tissue and Synovial Fluid of a Koala (<i>Phascolarctos cinereus</i>) with Arthritis. Journal of Wildlife Diseases, 2018, 54, 646-649.	0.3	3
34	A <i>Sarcoptes scabiei</i> specific isothermal amplification assay for detection of this important ectoparasite of wombats and other animals. PeerJ, 2018, 6, e5291.	0.9	17
35	Culture-independent approaches to chlamydial genomics. Microbial Genomics, 2018, 4, .	1.0	22
36	Molecular and serological dynamics of <i>Chlamydia pecorum</i> infection in a longitudinal study of prime lamb production. PeerJ, 2018, 6, e4296.	0.9	13

#	Article	IF	CITATIONS
37	Characterization of shifts of koala (<i>Phascolarctos cinereus)</i> intestinal microbial communities associated with antibiotic treatment. PeerJ, 2018, 6, e4452.	0.9	30
38	Cultureâ€independent genomics of a novel chlamydial pathogen of fish provides new insight into hostâ€specific adaptations utilized by these intracellular bacteria. Environmental Microbiology, 2017, 19, 1899-1913.	1.8	31
39	Multilocus sequence typing identifies an avian-like <i>Chlamydia psittaci</i> strain involved in equine placentitis and associated with subsequent human psittacosis. Emerging Microbes and Infections, 2017, 6, 1-3.	3.0	39
40	A new equine and zoonotic threat emerges from an old avian pathogen, Chlamydia psittaci. Clinical Microbiology and Infection, 2017, 23, 693-694.	2.8	26
41	Safety and immunogenicity of a prototype anti-Chlamydia pecorum recombinant protein vaccine in lambs and pregnant ewes. Vaccine, 2017, 35, 3461-3465.	1.7	10
42	Molecular evidence of Chlamydia pecorum and arthropod-associated Chlamydiae in an expanded range of marsupials. Scientific Reports, 2017, 7, 12844.	1.6	8
43	Molecular detection of Anaplasma platys, Anaplasma phagocytophilum and Wolbachia sp. but not Ehrlichia canis in Croatian dogs. Parasitology Research, 2017, 116, 3019-3026.	0.6	23
44	Culture-independent metagenomics supports discovery of uncultivable bacteria within the genus Chlamydia. Scientific Reports, 2017, 7, 10661.	1.6	49
45	New and emerging chlamydial infections of creatures great and small. New Microbes and New Infections, 2017, 18, 28-33.	0.8	40
46	Novel Chlamydiales genotypes identified in ticks from Australian wildlife. Parasites and Vectors, 2017, 10, 46.	1.0	21
47	Immunization of a wild koala population with a recombinant Chlamydia pecorum Major Outer Membrane Protein (MOMP) or Polymorphic Membrane Protein (PMP) based vaccine: New insights into immune response, protection and clearance. PLoS ONE, 2017, 12, e0178786.	1.1	24
48	Epidemiology of chlamydial infection and disease in a free-ranging koala (Phascolarctos cinereus) population. PLoS ONE, 2017, 12, e0190114.	1.1	39
49	Mitochondrial genome sequencing reveals potential origins of the scabies mite Sarcoptes scabiei infesting two iconic Australian marsupials. BMC Evolutionary Biology, 2017, 17, 233.	3.2	22
50	Asymptomatic infections with highly polymorphic Chlamydia suis are ubiquitous in pigs. BMC Veterinary Research, 2017, 13, 370.	0.7	31
51	From genomes to genotypes: molecular epidemiological analysis of Chlamydia gallinacea reveals a high level of genetic diversity for this newly emerging chlamydial pathogen. BMC Genomics, 2017, 18, 949.	1.2	15
52	Chlamydia pecorum: successful pathogen of koalas or Australian livestock?. Microbiology Australia, 2017, 38, 101.	0.1	1
53	Humoral immune response against two surface antigens of Chlamydia pecorum in vaccinated and naturally infected sheep. PLoS ONE, 2017, 12, e0188370.	1.1	5
54	Development and evaluation of rapid novel isothermal amplification assays for important veterinary pathogens: <i>Chlamydia psittaci</i> and <i>Chlamydia pecorum</i> . PeerJ, 2017, 5, e3799.	0.9	39

#	Article	IF	CITATIONS
55	Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes. BMC Genomics, 2016, 17, 710.	1.2	65
56	A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus). PLoS ONE, 2016, 11, e0146934.	1.1	42
57	Chlamydia Serine Protease Inhibitor, targeting HtrA, as a New Treatment for Koala Chlamydia infection. Scientific Reports, 2016, 6, 31466.	1.6	27
58	Koala translocations and Chlamydia : Managing risk in the effort to conserve native species. Biological Conservation, 2016, 197, 247-253.	1.9	20
59	Treatment of Chlamydia -associated ocular disease via a recombinant protein based vaccine in the koala (Phascolarctos cinereus). Biologicals, 2016, 44, 588-590.	0.5	12
60	Characterisation of the immune compounds in koala milk using a combined transcriptomic and proteomic approach. Scientific Reports, 2016, 6, 35011.	1.6	25
61	Clinical, diagnostic and pathologic features of presumptive cases of Chlamydia pecorum-associated arthritis in Australian sheep flocks. BMC Veterinary Research, 2016, 12, 193.	0.7	27
62	Chlamydial infections in wildlife–conservation threats and/or reservoirs of â€~spill-over' infections?. Veterinary Microbiology, 2016, 196, 78-84.	0.8	43
63	Australian human and parrot Chlamydia psittaci strains cluster within the highly virulent 6BC clade of this important zoonotic pathogen. Scientific Reports, 2016, 6, 30019.	1.6	58
64	The emergence of sarcoptic mange in Australian wildlife: an unresolved debate. Parasites and Vectors, 2016, 9, 316.	1.0	45
65	Serum Antibody Response to Koala Retrovirus Antigens Varies in Free-Ranging Koalas (Phascolarctos) Tj ETQq1	1 0.784314 0.3	4 rgBT /Overld
66	PREVALENCE AND PATHOLOGIC FEATURES OF <i>CHLAMYDIA PECORUM</i> INFECTIONS IN SOUTH AUSTRALIAN KOALAS (<i>PHASCOLARCTOS CINEREUS</i>). Journal of Wildlife Diseases, 2016, 52, 301-306.	0.3	26
67	Humoral immune responses in koalas (Phascolarctos cinereus) either naturally infected with Chlamydia pecorum or following administration of a recombinant chlamydial major outer membrane protein vaccine. Vaccine, 2016, 34, 775-782.	1.7	21
68	HapFlow: visualizing haplotypes in sequencing data. Bioinformatics, 2016, 32, 441-443.	1.8	2
69	Identification of unusual Chlamydia pecorum genotypes in Victorian koalas (Phascolarctos cinereus) and clinical variables associated with infection. Journal of Medical Microbiology, 2016, 65, 420-428.	0.7	29
70	Antibody and Cytokine Responses of Koalas (Phascolarctos cinereus) Vaccinated with Recombinant Chlamydial Major Outer Membrane Protein (MOMP) with Two Different Adjuvants. PLoS ONE, 2016, 11, e0156094.	1.1	23
71	Identification, characterisation and expression analysis of natural killer receptor genes in Chlamydia pecorum infected koalas (Phascolarctos cinereus). BMC Genomics, 2015, 16, 796.	1.2	12
72	Genetic diversity in the plasticity zone and the presence of the chlamydial plasmid differentiates Chlamydia pecorum strains from pigs, sheep, cattle, and koalas. BMC Genomics, 2015, 16, 893.	1.2	40

#	Article	IF	CITATIONS
73	Phylogenetic analysis of human Chlamydia pneumoniae strains reveals a distinct Australian indigenous clade that predates European exploration of the continent. BMC Genomics, 2015, 16, 1094.	1.2	5
74	SNP Marker Discovery in Koala TLR Genes. PLoS ONE, 2015, 10, e0121068.	1.1	7
75	Comparative genomic analysis of human Chlamydia pneumoniae isolates from respiratory, brain and cardiac tissues. Genomics, 2015, 106, 373-383.	1.3	23
76	Characterisation of Chlamydia pneumoniae and other novel chlamydial infections in captive snakes. Veterinary Microbiology, 2015, 178, 88-93.	0.8	26
77	Twenty years of research into Chlamydia-like organisms: a revolution in our understanding of the biology and pathogenicity of members of the phylum Chlamydiae. Pathogens and Disease, 2015, 73, 1-15.	0.8	112
78	Novel Sequence Types of Chlamydia pecorum Infect Free-Ranging Alpine Ibex (Capra ibex) and Red Deer (Cervus elaphus) in Switzerland. Journal of Wildlife Diseases, 2015, 51, 479.	0.3	12
79	Culture-Independent Genome Sequencing of Clinical Samples Reveals an Unexpected Heterogeneity of Infections by Chlamydia pecorum. Journal of Clinical Microbiology, 2015, 53, 1573-1581.	1.8	40
80	Chlamydia pecorum infections in sheep and cattle: A common and under-recognised infectious disease with significant impact on animal health. Veterinary Journal, 2015, 206, 252-260.	0.6	53
81	A transcriptome resource for the koala (Phascolarctos cinereus): insights into koala retrovirus transcription and sequence diversity. BMC Genomics, 2014, 15, 786.	1.2	49
82	Chlamydial infections of fish: Diverse pathogens and emerging causes of disease in aquaculture species. Veterinary Microbiology, 2014, 170, 19-27.	0.8	39
83	Evaluation of the relationship between Chlamydia pecorum sequence types and disease using a species-specific multi-locus sequence typing scheme (MLST). Veterinary Microbiology, 2014, 174, 214-222.	0.8	37
84	Comparative genomics of koala, cattle and sheep strains of Chlamydia pecorum. BMC Genomics, 2014, 15, 667.	1.2	33
85	Molecular and pathological insights into Chlamydia pecorum-associated sporadic bovine encephalomyelitis (SBE) in Western Australia. BMC Veterinary Research, 2014, 10, 121.	0.7	29
86	Vaccination of koalas (Phascolarctos cinereus) with a recombinant chlamydial major outer membrane protein adjuvanted with poly I:C, a host defense peptide and polyphosphazine, elicits strong and long lasting cellular and humoral immune responses. Vaccine, 2014, 32, 5781-5786.	1.7	44
87	Chlamydial infections of fish: Diverse pathogens and emerging causes of disease in aquaculture species. Veterinary Microbiology, 2014, 171, 258-266.	0.8	15
88	Interleukin 17A is an immune marker for chlamydial disease severity and pathogenesis in the koala (Phascolarctos cinereus). Developmental and Comparative Immunology, 2014, 46, 423-429.	1.0	26
89	Chlamydia genomics: providing novel insights into chlamydial biology. Trends in Microbiology, 2014, 22, 464-472.	3.5	83
90	The koala immunological toolkit: sequence identification and comparison of key markers of the koala (Phascolarctos cinereus) immune response. Australian Journal of Zoology, 2014, 62, 195.	0.6	15

#	Article	IF	CITATIONS
91	Draft Genome and Plasmid Sequences of Chlamydia pneumoniae Strain B21 from an Australian Endangered Marsupial, the Western Barred Bandicoot. Genome Announcements, 2014, 2, .	0.8	7
92	Molecular characterisation and expression analysis of Interferon gamma in response to natural Chlamydia infection in the koala, Phascolarctos cinereus. Gene, 2013, 527, 570-577.	1.0	28
93	Molecular Characterization of "Candidatus Similichlamydia latridicola―gen. nov., sp. nov. (Chlamydiales: "Candidatus Parilichlamydiaceaeâ€), a Novel Chlamydia-Like Epitheliocystis Agent in the Striped Trumpeter, Latris lineata (Forster). Applied and Environmental Microbiology, 2013, 79, 4914-4920.	1.4	37
94	Comparison of antigen detection and quantitative PCR in the detection of chlamydial infection in koalas (Phascolarctos cinereus). Veterinary Journal, 2013, 195, 391-393.	0.6	16
95	Antigenic specificity of a monovalent versus polyvalent MOMP based Chlamydia pecorum vaccine in koalas (Phascolarctos cinereus). Vaccine, 2013, 31, 1217-1223.	1.7	33
96	Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas. Veterinary Microbiology, 2013, 165, 214-223.	0.8	173
97	Investigation of the koala (Phascolarctos cinereus) hindgut microbiome via 16S pyrosequencing. Veterinary Microbiology, 2013, 167, 554-564.	0.8	51
98	Chlamydia pneumoniae: modern insights into an ancient pathogen. Trends in Microbiology, 2013, 21, 120-128.	3.5	78
99	Genetic diversity of Chlamydia pecorum strains in wild koala locations across Australia and the implications for a recombinant C. pecorum major outer membrane protein based vaccine. Veterinary Microbiology, 2013, 167, 513-522.	0.8	43
100	Conjunctivitis Associated with <i>Chlamydia pecorum</i> in Three Koalas (<i>Phascolarctos) Tj ETQq0 0 0 rgBT / 1066-1069.</i>	Overlock 0.3	10 Tf 50 387 8
101	Multilocus Sequence Analysis Provides Insights into Molecular Epidemiology of Chlamydia pecorum Infections in Australian Sheep, Cattle, and Koalas. Journal of Clinical Microbiology, 2013, 51, 2625-2632.	1.8	48
102	Molecular Characterization of "Candidatus Parilichlamydia carangidicola,―a Novel Chlamydia-Like Epitheliocystis Agent in Yellowtail Kingfish, Seriola lalandi (Valenciennes), and the Proposal of a New Family, "Candidatus Parilichlamydiaceae―fam. nov. (Order Chlamydiales). Applied and Environmental Microbiology, 2013, 79, 1590-1597.	1.4	65
103	Preliminary Characterisation of Tumor Necrosis Factor Alpha and Interleukin-10 Responses to Chlamydia pecorum Infection in the Koala (Phascolarctos cinereus). PLoS ONE, 2013, 8, e59958.	1.1	28
104	Vaccination of Koalas with a Recombinant Chlamydia pecorum Major Outer Membrane Protein Induces Antibodies of Different Specificity Compared to Those Following a Natural Live Infection. PLoS ONE, 2013, 8, e74808.	1.1	19
105	"Candidatus Similichlamydia laticolaâ€; a Novel Chlamydia-like Agent of epitheliocystis in Seven Consecutive Cohorts of Farmed Australian Barramundi, Lates calcarifer (Bloch). PLoS ONE, 2013, 8, e82889.	1.1	25
106	Vaccination of healthy and diseased koalas (Phascolarctos cinereus) with a Chlamydia pecorum multi-subunit vaccine: Evaluation of immunity and pathology. Vaccine, 2012, 30, 1875-1885.	1.7	59
107	A natural freshwater origin for two chlamydial species, <i>Candidatus</i> Piscichlamydia salmonis and <i>Candidatus</i> Clavochlamydia salmonicola, causing mixed infections in wild brown trout (<i>Salmo trutta</i>). Environmental Microbiology, 2012, 14, 2048-2057.	1.8	39

Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos) Tj ETQq0 0 0 rgBT /O γ erlock 10, Tf 50 62 T

#	Article	IF	CITATIONS
109	Chlamydia abortus YhbZ, a truncated Obg family GTPase, associates with the Escherichia coli large ribosomal subunit. Microbial Pathogenesis, 2011, 50, 200-206.	1.3	12
110	Using quantitative polymerase chain reaction to correlate Chlamydia pecorum infectious load with ocular, urinary and reproductive tract disease in the koala (Phascolarctos cinereus). Australian Veterinary Journal, 2011, 89, 409-412.	0.5	69
111	Novel Chlamydiales associated with epitheliocystis in a leopard shark Triakis semifasciata. Diseases of Aquatic Organisms, 2010, 91, 75-81.	0.5	34
112	The Waddlia Genome: A Window into Chlamydial Biology. PLoS ONE, 2010, 5, e10890.	1.1	104
113	Molecular evidence for chlamydial infections in the eyes of sheep. Veterinary Microbiology, 2009, 135, 142-146.	0.8	49
114	Predator or prey? Chlamydophila abortus infections of a free-living amoebae, Acanthamoeba castellani 9GU. Microbes and Infection, 2008, 10, 591-597.	1.0	8
115	Chlamydophila pneumoniae HflX belongs to an uncharacterized family of conserved GTPases and associates with the Escherichia coli 50S large ribosomal subunit. Microbiology (United Kingdom), 2008, 154, 3537-3546.	0.7	26
116	Prevalence of chlamydiae in semen and genital tracts of bulls, rams and bucks. Theriogenology, 2007, 67, 303-310.	0.9	48
117	Ovine Enzootic Abortion (OEA): a comparison of antibody responses in vaccinated and naturally-infected swiss sheep over a two year period. BMC Veterinary Research, 2007, 3, 24.	0.7	18
118	Differential expression of chlamydial signal transduction genes in normal and interferon gamma-induced persistent Chlamydophila pneumoniae infections. Microbes and Infection, 2006, 8, 61-72.	1.0	27
119	Detection of chlamydiae in boar semen and genital tracts. Veterinary Microbiology, 2006, 116, 149-157.	0.8	32
120	Detection of Mycobacteria and Chlamydiae in Granulomatous Inflammation of Reptiles: A Retrospective Study. Veterinary Pathology, 2004, 41, 388-397.	0.8	98
121	Detection of novel chlamydiae in cats with ocular disease. American Journal of Veterinary Research, 2003, 64, 1421-1428.	0.3	67
122	Molecular Evidence for Novel Chlamydial Infections in the Koala (Phascolarctos cinereus). Systematic and Applied Microbiology, 2003, 26, 245-253.	1.2	50
123	The Koala Genome Consortium. Technical Reports of the Australian Museum Online, 0, 24, 91-92.	0.0	7