Thomas Thomberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5651938/publications.pdf

Version: 2024-02-01

279487 276539 81 1,824 23 41 citations h-index g-index papers 81 81 81 1829 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bulk synthesis of stoichiometric/meteoritic troilite (FeS) by highâ€temperature pyrite decomposition and pyrrhotite melting. Meteoritics and Planetary Science, 2022, 57, 588-602.	0.7	4
2	Electrochemical Characteristics of Zn-Ion Hybrid Supercapacitors Based on Aqueous Solution of Different Electrolytes. Journal of the Electrochemical Society, 2022, 169, 020512.	1.3	10
3	Preparation of nanofibrous materials activated with metal clusters for active and long-lasting air filters. Separation and Purification Technology, 2022, 288, 120697.	3.9	6
4	Investigation of Oxygen Reduction on Platinum Nanoparticles Deposited Onto Peat-Derived Carbon Carrier. ECS Transactions, 2022, 108, 49-58.	0.3	1
5	Characterisation of Novel Nitrogen Doped Reduced Graphene Oxide. ECS Transactions, 2022, 108, 99-109.	0.3	O
6	Investigation of Oxygen Reduction on Platinum Nanoparticles Deposited Onto Peat-Derived Carbon Carrier. ECS Meeting Abstracts, 2022, MA2022-01, 1498-1498.	0.0	0
7	Characterisation of Novel Nitrogen Doped Reduced Graphene Oxide. ECS Meeting Abstracts, 2022, MA2022-01, 1509-1509.	0.0	O
8	Carbide-Derived Carbons: WAXS and Raman Spectra for Detailed Structural Analysis. Journal of Carbon Research, 2021, 7, 29.	1.4	10
9	Bis(trifluoromethanesulfonyl)imide Metallic Salts Based Electrolytes for Electrochemical Capacitor Application: Theoretical vs Experimental Performance. Journal of the Electrochemical Society, 2021, 168, 070528.	1.3	3
10	Zn(ClO4)2 aqueous solution–based Zn thin foil carbon cloth two-electrode single-cell characteristics. Journal of Solid State Electrochemistry, 2021, 25, 2869-2880.	1.2	5
11	The electrochemical behaviour of protic quaternary amine based room-temperature ionic liquid N2210(OTf) at negatively and positively polarized micro-mesoporous carbon electrode investigated by in situ X-ray photoelectron spectroscopy, in situ mass-spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy methods. Journal of Electroanalytical Chemistry, 2021, 897,	1.9	3
12	The Electrochemical Behaviour of Quaternary Amine-Based Room-Temperature Ionic Liquid N4111(TFSI). Catalysts, 2021, 11, 1315.	1.6	2
13	Hydrothermal and peat-derived carbons as electrode materials for high-efficient electrical double-layer capacitors. Journal of Applied Electrochemistry, 2020, 50, 15-32.	1.5	17
14	lodide ion containing ionic liquid mixture based asymmetrical capacitor performance. Journal of Energy Storage, 2020, 32, 101845.	3.9	8
15	Effect of Zinc Chloride Activation on D-Glucose Derived Carbons Based Capacitors Performance in Ionic Liquid. Journal of the Electrochemical Society, 2020, 167, 080533.	1.3	8
16	Effect of alkali and halide ion doping on the energy storage characteristics of ionic liquid based supercapacitors. Electrochimica Acta, 2019, 319, 82-87.	2.6	12
17	Enhanced Power Performance of Highly Mesoporous Sol-Gel TiC Derived Carbons in Ionic Liquid and Non-Aqueous Electrolyte Based Capacitors. Journal of the Electrochemical Society, 2019, 166, A2887-A2895.	1.3	11
18	Electrical Double Layer Capacitors Based on Steam and CO ₂ -Steam Co-Activated Carbon Electrodes and Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2019, 166, A1558-A1567.	1.3	13

#	Article	IF	CITATIONS
19	Potassium Salts Based Non-Aqueous Electrolytes for Electrical Double Layer Capacitors: A Comparison with LiPF ₆ and NaPF ₆ Based Electrolytes. Journal of the Electrochemical Society, 2018, 165, A3862-A3870.	1.3	12
20	Steam and Carbon Dioxide Co-Activated Silicon Carbide-Derived Carbons for High Power Density Electrical Double Layer Capacitors. Journal of the Electrochemical Society, 2018, 165, A2357-A2364.	1.3	7
21	Influence of porosity parameters and electrolyte chemical composition on the power densities of non-aqueous and ionic liquid based supercapacitors. Electrochimica Acta, 2018, 283, 931-948.	2.6	37
22	Synthesis of Porous Carbon By Hydrothermal Carbonization and Zinc Chloride Activation of Granulated White Sugar for Supercapacitor Application. ECS Meeting Abstracts, 2018, MA2018-02, 132-132.	0.0	1
23	Influence of the Pore Shape and Size Distribution in Hierarchically Porous Electrodes on Energy and Power Densities of Electrochemical Devices. ECS Meeting Abstracts, 2018, , .	0.0	0
24	Application of Some Carbon Fabrics as Outstanding Supercapacitor Electrode Materials in Acetonitrile Based Electrolyte. Journal of the Electrochemical Society, 2017, 164, A453-A460.	1.3	4
25	Synthesis and characterization of d-glucose derived nanospheric hard carbon negative electrodes for lithium- and sodium-ion batteries. Electrochimica Acta, 2017, 253, 536-544.	2.6	67
26	Carbon for Energy Storage Derived from Granulated White Sugar by Hydrothermal Carbonization and Subsequent Zinc Chloride Activation. Journal of the Electrochemical Society, 2017, 164, A1866-A1872.	1.3	32
27	D-Glucose Derived Carbon Materials Activated by Zinc Chloride, Potassium Hydroxide or Mixture of Them for Supercapacitor Electrodes. ECS Meeting Abstracts, 2017, , .	0.0	0
28	Optimizing the Electrolyte for Glucose-Derived Carbon Based Na-Ion Battery. ECS Meeting Abstracts, $2017, \ldots$	0.0	0
29	Influence of the Pore Shape and Size Distribution in Hierarchically Porous Electrodes on Energy and Power Densities of Electrochemical Devices. ECS Meeting Abstracts, 2017, , .	0.0	0
30	Granulated White Sugar Derived Carbon Material for Energy Storage Application. ECS Meeting Abstracts, 2017, , .	0.0	0
31	Electrochemical Investigation of 1-Ethyl-3-methylimidazolium Bromide and Tetrafluoroborate Mixture at Bi(111) Electrode Interface. Journal of the Electrochemical Society, 2016, 163, H723-H730.	1.3	26
32	Microporous–mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them. Journal of Power Sources, 2016, 326, 624-634.	4.0	68
33	Supercapacitors Based on Activated Silicon Carbide-Derived Carbon Materials and Ionic Liquid. Journal of the Electrochemical Society, 2016, 163, A1317-A1325.	1.3	33
34	Oxygen Electroreduction on Platinum Nanoparticles Activated Electrodes Deposited onto D-Glucose Derived Carbon Support in 0.1 M KOH. Journal of the Electrochemical Society, 2016, 163, F1251-F1257.	1.3	14
35	Characteristics of Capacitors Based on Ionic Liquids: From Dielectric Polymers to Redox-Active Adsorbed Species. ECS Transactions, 2016, 75, 161-170.	0.3	6
36	D-Glucose Derived Nanospheric Hard Carbon Electrodes for Room-Temperature Sodium-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A1619-A1626.	1.3	66

#	Article	IF	CITATIONS
37	lonic liquid-1,2-dimethoxyethane mixture as electrolyte for high power density supercapacitors. Journal of Energy Chemistry, 2016, 25, 609-614.	7.1	21
38	Carbon Dioxide Activated SiC-CDC: Attractive Material for Supercapacitor Electrodes. ECS Transactions, 2015, 69, 1-10.	0.3	1
39	Supercapacitors Based on Mixture of Room Temperature Ionic Liquids Containing Specifically Adsorbed Iodide Anions. ECS Transactions, 2015, 64, 1-11.	0.3	6
40	Different Carbide Derived Nanoporous Carbon Supports and Electroreduction of Oxygen. ECS Transactions, 2015, 66, 69-80.	0.3	4
41	High power density supercapacitors based on the carbon dioxide activated d-glucose derived carbon electrodes and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid. Journal of Power Sources, 2015, 280, 667-677.	4.0	111
42	Low Temperature Performance of Electrochemical Double-Layer Capacitor based on Electrospun Half-Cells. Journal of the Electrochemical Society, 2015, 162, A5031-A5036.	1.3	6
43	Huge enhancement of energy storage capacity and power density of supercapacitors based on the carbon dioxide activated microporous SiC-CDC. Electrochimica Acta, 2015, 161, 364-370.	2.6	75
44	Separator Materials Influence on Supercapacitors Performance in Viscous Electrolytes. ECS Transactions, 2015, 64, 41-49.	0.3	7
45	Oxygen Electroreduction on Platinum Nanoparticles Deposited onto D-Glucose Derived Carbon. Journal of the Electrochemical Society, 2015, 162, F651-F660.	1.3	9
46	Supercapacitors Based on Propylene Carbonate Solution Operating from -45 ÂC to 100 ÂC. ECS Transactions, 2015, 64, 31-40.	0.3	3
47	Supercapacitors Based on Propylene Carbonate with Addition of Sulfur Containing Organic Solvents. ECS Transactions, 2015, 64, 21-30.	0.3	1
48	D-Glucose Derived Micro/Mesoporous Carbons for Ultra-High Rate Supercapacitor Application. ECS Transactions, 2014, 58, 3-12.	0.3	0
49	Supercapacitors Based on Propylene Carbonate with Small Addition of Different Sulfur Containing Organic Solvents. Journal of the Electrochemical Society, 2014, 161, A1284-A1290.	1.3	14
50	Fluoroethylene Carbonate and Propylene Carbonate Mixtures Based Electrolytes for Supercapacitors. ECS Transactions, 2014, 58, 71-79.	0.3	5
51	Application of multistep electrospinning method for preparation of electrical double-layer capacitor half-cells. Electrochimica Acta, 2014, 119, 72-77.	2.6	17
52	Electrochemical Double Layer Capacitors Based on Propylene Carbonate Solution Operating from â~45°C to 100°C. Journal of the Electrochemical Society, 2014, 161, A712-A717.	1.3	9
53	Novel micromesoporous carbon materials synthesized from tantalum hafnium carbide and tungsten titanium carbide. Carbon, 2014, 67, 607-616.	5.4	46
54	A Type High Capacitance Supercapacitor Based on Mixed Room Temperature Ionic Liquids Containing Specifically Adsorbed Iodide Anions. Journal of the Electrochemical Society, 2014, 161, A222-A227.	1.3	69

#	Article	IF	Citations
55	Specific Performance of Supercapacitors at Lower Temperatures Based on Different Separator Materials. Journal of the Electrochemical Society, 2013, 160, A449-A457.	1.3	25
56	Supercapacitors based on carbide-derived carbons synthesised using HCl and Cl2 as reactants. Journal of Solid State Electrochemistry, 2013, 17, 19-28.	1.2	42
57	Influence of separator properties on electrochemical performance of electrical double-layer capacitors. Journal of Electroanalytical Chemistry, 2013, 689, 8-20.	1.9	42
58	Carbon materials for supercapacitor application by hydrothermal carbonization of D-glucose. IOP Conference Series: Materials Science and Engineering, 2013, 49, 012020.	0.3	3
59	Fluoroethylene Carbonate as Co-Solvent for Propylene Carbonate Based Electrical Double Layer Capacitors. Journal of the Electrochemical Society, 2013, 160, A1025-A1030.	1.3	19
60	High Power Density Supercapacitors Based on the Carbon Dioxide Activated D-Glucose Derived Carbon Electrodes and Acetonitrile Electrolyte. Journal of the Electrochemical Society, 2013, 160, A1834-A1841.	1.3	47
61	Polymorphic Behavior and Morphology of Electrospun Poly(Vinylidene Fluoride) Separator Materials for Non-Aqueous Electrolyte Based Electric Double Layer Capacitors. ECS Transactions, 2013, 50, 49-58.	0.3	8
62	Comparative Study of Using Chlorine and Hydrogen Chloride for Synthesis of Titanium Carbide Derived Carbon. ECS Transactions, 2013, 50, 3-12.	0.3	1
63	Replacing Chlorine with Hydrogen Chloride as a Possible Reactant for Synthesis of Titanium Carbide Derived Carbon Powders for High-Technology Devices. IOP Conference Series: Materials Science and Engineering, 2013, 49, 012018.	0.3	1
64	Electrochemical Behavior of \hat{l}_{\pm} -Tungsten Carbide-Derived Carbon Based Electric Double-Layer Capacitors. Journal of the Electrochemical Society, 2012, 159, A208-A213.	1.3	23
65	Specific performance of electrical double layer capacitors based on different separator materials in room temperature ionic liquid. Electrochemistry Communications, 2012, 22, 77-80.	2.3	51
66	Mesoporous carbide-derived carbons prepared from different chromium carbides. Microporous and Mesoporous Materials, 2011, 141, 88-93.	2.2	55
67	Nanostructured carbide-derived carbon synthesized by chlorination of tungsten carbide. Carbon, 2011, 49, 4427-4433.	5.4	76
68	Energy and power performance of electrochemical double-layer capacitors based on molybdenum carbide derived carbon. Electrochimica Acta, 2010, 55, 3138-3143.	2.6	99
69	Comparison of Electrospun and Commercially Available Separator Materials for Supercapacitors. ECS Transactions, 2009, 19, 23-32.	0.3	5
70	Influence of Mesoporous Separator Properties on the Parameters of Electrical Double-Layer Capacitor Single Cells. Journal of the Electrochemical Society, 2009, 156, A334.	1.3	48
71	Energy and power performance of vanadium carbide derived carbon electrode materials for supercapacitors. Journal of Electroanalytical Chemistry, 2009, 630, 55-62.	1.9	72
72	Nanoscale fine-tuning of porosity of carbide-derived carbon prepared from molybdenum carbide. Carbon, 2009, 47, 23-29.	5.4	128

#	ARTICLE	IF	CITATIONS
73	Impedance spectroscopy data for S2O82â^ anion electroreduction at Bi(111) plane. Electrochimica Acta, 2008, 53, 3337-3349.	2.6	11
74	Micro- and Mesoporous Carbide-Derived Carbon Materials and Polymer Membranes for Supercapacitors. ECS Transactions, 2008, 16, 57-67.	0.3	14
75	Advanced nanostructured carbon materials for electrical double layer capacitors. Journal of Physics: Conference Series, 2007, 93, 012002.	0.3	2
76	Synthesis and characterisation of nanoporous carbide-derived carbon by chlorination of vanadium carbide. Carbon, 2007, 45, 2717-2722.	5.4	109
77	Electroreduction of Complex Ions at Bismuth and Cadmium Single Crystal Plane Electrodes. ECS Transactions, 2006, 1, 9-17.	0.3	2
78	Impedance spectroscopy data for anions electroreduction kinetics at Cd(0001) plane electrode. Journal of Electroanalytical Chemistry, 2006, 586, 237-246.	1.9	14
79	The kinetics of electroreduction of peroxodisulfate ions on single crystal cadmium and bismuth electrodes. Journal of Electroanalytical Chemistry, 2005, 582, 130-143.	1.9	12
80	The kinetics of electroreduction of peroxodisulfate anion on electrochemically polished Cd(0001) plane. Electrochimica Acta, 2004, 49, 1271-1279.	2.6	8
81	Electroreduction of peroxodisulfate anion at a Cd(0001) single-crystal plane electrode. Journal of Electroanalytical Chemistry, 2000, 485, 89-93.	1.9	17