Andrew J Fleetwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5651711/publications.pdf

Version: 2024-02-01

32 papers 2,570 citations

304602 22 h-index 434063 31 g-index

32 all docs

 $\begin{array}{c} 32 \\ \text{docs citations} \end{array}$

times ranked

32

4557 citing authors

#	Article	IF	CITATIONS
1	Hematopoietic Progenitors and the Bone Marrow Niche Shape the Inflammatory Response and Contribute to Chronic Disease. International Journal of Molecular Sciences, 2022, 23, 2234.	1.8	7
2	Type I interferon antagonism of the JMJD3-IRF4 pathway modulates macrophage activation and polarization. Cell Reports, 2022, 39, 110719.	2.9	13
3	IL-23 in arthritic and inflammatory pain development in mice. Arthritis Research and Therapy, 2020, 22, 123.	1.6	10
4	CCL17 in Inflammation and Pain. Journal of Immunology, 2020, 205, 213-222.	0.4	21
5	Targeting GM-CSF for collagenase-induced osteoarthritis pain and disease in mice. Osteoarthritis and Cartilage, 2020, 28, 486-491.	0.6	28
6	Origins and diversity of macrophages in health and disease. Clinical and Translational Immunology, 2020, 9, e1222.	1.7	40
7	Glycolysis Is Required for LPS-Induced Activation and Adhesion of Human CD14+CD16â^ Monocytes. Frontiers in Immunology, 2019, 10, 2054.	2.2	45
8	GM-CSF– and IRF4-Dependent Signaling Can Regulate Myeloid Cell Numbers and the Macrophage Phenotype during Inflammation. Journal of Immunology, 2019, 202, 3033-3040.	0.4	28
9	Autocrine IFN-I inhibits isocitrate dehydrogenase in the TCA cycle of LPS-stimulated macrophages. Journal of Clinical Investigation, 2019, 129, 4239-4244.	3.9	45
10	Glucocorticoids promote apoptosis of proinflammatory monocytes by inhibiting ERK activity. Cell Death and Disease, 2018, 9, 267.	2.7	50
11	Cytokine-Induced Acute Inflammatory Monoarticular Arthritis. Methods in Molecular Biology, 2018, 1784, 215-223.	0.4	1
12	CCL17 blockade as a therapy for osteoarthritis pain and disease. Arthritis Research and Therapy, 2018, 20, 62.	1.6	71
13	CSF-1 in Inflammatory and Arthritic Pain Development. Journal of Immunology, 2018, 201, 2042-2053.	0.4	22
14	Epigenetic and transcriptional regulation of IL4-induced CCL17 production in human monocytes and murine macrophages. Journal of Biological Chemistry, 2018, 293, 11415-11423.	1.6	44
15	TNF and granulocyte macrophage-colony stimulating factor interdependence mediates inflammation via CCL17. JCI Insight, 2018, 3, .	2.3	36
16	G-CSF Receptor Blockade Ameliorates Arthritic Pain and Disease. Journal of Immunology, 2017, 198, 3565-3575.	0.4	28
17	Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles. Frontiers in Cellular and Infection Microbiology, 2017, 7, 351.	1.8	138
18	Colony Stimulating Factors (CSFs). , 2016, , 586-596.		1

#	Article	IF	CITATIONS
19	OSCARâ€collagen signaling in monocytes plays a proinflammatory role and may contribute to the pathogenesis of rheumatoid arthritis. European Journal of Immunology, 2016, 46, 952-963.	1.6	19
20	Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation. Journal of Clinical Investigation, 2016, 126, 3453-3466.	3.9	129
21	Collagen Induces Maturation of Human Monocyte-Derived Dendritic Cells by Signaling through Osteoclast-Associated Receptor. Journal of Immunology, 2015, 194, 3169-3179.	0.4	26
22	Specific Contributions of CSF-1 and GM-CSF to the Dynamics of the Mononuclear Phagocyte System. Journal of Immunology, 2015, 195, 134-144.	0.4	70
23	Cutting Edge: Identification of Neutrophil PGLYRP1 as a Ligand for TREM-1. Journal of Immunology, 2015, 194, 1417-1421.	0.4	119
24	Porphyromonas gingivalis-derived RgpA-Kgp Complex Activates the Macrophage Urokinase Plasminogen Activator System. Journal of Biological Chemistry, 2015, 290, 16031-16042.	1.6	21
25	GMâ€CSF and uPA are required for Porphyromonas gingivalis â€induced alveolar bone loss in a mouse periodontitis model. Immunology and Cell Biology, 2015, 93, 705-715.	1.0	19
26	Urokinase Plasminogen Activator Is a Central Regulator of Macrophage Three-Dimensional Invasion, Matrix Degradation, and Adhesion. Journal of Immunology, 2014, 192, 3540-3547.	0.4	51
27	Defining GM-CSF– and Macrophage-CSF–Dependent Macrophage Responses by In Vitro Models. Journal of Immunology, 2012, 188, 5752-5765.	0.4	429
28	GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on Type I interferon signaling. Journal of Leukocyte Biology, 2009, 86, 411-421.	1.5	240
29	Macrophage lineage phenotypes and osteoclastogenesisâ€"Complexity in the control by GM-CSF and TGF-β. Bone, 2007, 40, 323-336.	1.4	78
30	Granulocyte-Macrophage Colony-Stimulating Factor (CSF) and Macrophage CSF-Dependent Macrophage Phenotypes Display Differences in Cytokine Profiles and Transcription Factor Activities: Implications for CSF Blockade in Inflammation. Journal of Immunology, 2007, 178, 5245-5252.	0.4	514
31	A Central Role for the Hsp90·Cdc37 Molecular Chaperone Module in Interleukin-1 Receptor-associated-kinase-dependent Signaling by Toll-like Receptors. Journal of Biological Chemistry, 2005, 280, 9813-9822.	1.6	48
32	Functions of Granulocyte-Macrophage Colony-Stimulating Factor. Critical Reviews in Immunology, 2005, 25, 405-428.	1.0	179