
Mikihito Takenaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5651570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	13.5	973
2	New Insight into Hierarchical Structures of Carbon Black Dispersed in Polymer Matrices:  A Combined Small-Angle Scattering Study. Macromolecules, 2008, 41, 453-464.	2.2	155
3	Orthorhombic Fddd Network in Diblock Copolymer Melts. Macromolecules, 2007, 40, 4399-4402.	2.2	154
4	Precision Self-Assembly of Amphiphilic Random Copolymers into Uniform and Self-Sorting Nanocompartments in Water. Macromolecules, 2016, 49, 5084-5091.	2.2	139
5	Fabrication of Twoâ€Dimensional Polymer Arrays: Template Synthesis of Polypyrrole between Redoxâ€Active Coordination Nanoslits. Angewandte Chemie - International Edition, 2008, 47, 9883-9886.	7.2	126
6	Multipurpose soft-material SAXS/WAXS/GISAXS beamline at SPring-8. Polymer Journal, 2011, 43, 471-477.	1.3	112
7	Directed Self-Assembly of Diblock Copolymer Thin Films on Chemically-Patterned Substrates for Defect-Free Nano-Patterning. Macromolecules, 2008, 41, 9267-9276.	2.2	106
8	Scattering studies of selfâ€assembling processes of polymer blends in spinodal decomposition. II. Temperature dependence. Journal of Chemical Physics, 1992, 96, 6177-6190.	1.2	95
9	Directed Self-Assembly of POSS Containing Block Copolymer on Lithographically Defined Chemical Template with Morphology Control by Solvent Vapor. Macromolecules, 2012, 45, 292-304.	2.2	91
10	Nucleation and Growth of Metal Nanoparticles during Photoreduction Using In Situ Time-Resolved SAXS Analysis. Journal of Physical Chemistry C, 2011, 115, 14081-14092.	1.5	90
11	Scattering studies of self-assembling processes of polymer blends in spinodal decomposition. Journal of Applied Crystallography, 1991, 24, 457-466.	1.9	88
12	Spontaneous pinning of domain growth during spinodal decomposition of off ritical polymer mixtures. Journal of Chemical Physics, 1992, 97, 679-689.	1.2	88
13	Compartmentalization Technologies via Self-Assembly and Cross-Linking of Amphiphilic Random Block Copolymers in Water. Journal of the American Chemical Society, 2017, 139, 7164-7167.	6.6	87
14	Amphiphilic Random Copolymers with Hydrophobic/Hydrogen-Bonding Urea Pendants: Self-Folding Polymers in Aqueous and Organic Media. Macromolecules, 2016, 49, 7917-7927.	2.2	77
15	Structure Factors of Dispersible Units of Carbon Black Filler in Rubbers. Langmuir, 2005, 21, 11409-11413.	1.6	76
16	Forced Rayleigh scattering study of diffusion of block copolymers. 2. Self-diffusion of block copolymer chains in lamellar microdomains and disordered melts. Macromolecules, 1993, 26, 492-498.	2.2	72
17	Nanostructured Materials via the Pendant Self-Assembly of Amphiphilic Crystalline Random Copolymers. Journal of the American Chemical Society, 2018, 140, 8376-8379.	6.6	70
18	Stability of the <i>Fddd</i> Phase in Diblock Copolymer Melts. Macromolecules, 2008, 41, 7667-7670.	2.2	57

#	Article	IF	CITATIONS
19	FRS study of the diffusion of a block copolymer. 1. Direct determination of the anisotropic diffusion of block copolymer chains in a lamellar microdomain. Macromolecules, 1993, 26, 189-197.	2.2	56
20	Slow spinodal decomposition in binary liquid mixtures of polymers. IV. Scaled structure factor for later stage unmixing. Journal of Chemical Physics, 1990, 92, 4566-4575.	1.2	54
21	Structure Analyses of Swollen Rubber-Filler Systems by Using Contrast Variation SANS. Macromolecules, 2009, 42, 308-311.	2.2	53
22	Experimental studies of stress–diffusion coupling in semi-dilute polymer solutions. I. †Viscoelastic length' and viscoelastic effects on early stage spinodal decomposition. Polymer, 2001, 42, 9193-9203.	1.8	52
23	Experimental station for multiscale surface structural analyses of soft-material films at SPring-8 via a GISWAX/GIXD/XR-integrated system. Polymer Journal, 2013, 45, 109-116.	1.3	51
24	Cylindrical Domains of Block Copolymers Developed via Ordering under Moving Temperature Gradient. Macromolecules, 2007, 40, 5923-5933.	2.2	50
25	Intramolecular Folding or Intermolecular Self-Assembly of Amphiphilic Random Copolymers: On-Demand Control by Pendant Design. Macromolecules, 2018, 51, 3738-3745.	2.2	50
26	Determination of the <i>Fddd</i> Phase Boundary in Polystyrene- <i>block</i> -polyisoprene Diblock Copolymer Melts. Macromolecules, 2009, 42, 5266-5271.	2.2	49
27	Slow spinodal decomposition in binary liquid mixtures of polymers. III. Scaling analyses of laterâ€stage unmixing. Journal of Chemical Physics, 1990, 92, 3213-3221.	1.2	45
28	Small-angle neutron scattering and light scattering studies on the miscibility of protonated polyisoprene/deuterated polybutadiene blends. Macromolecules, 1991, 24, 1813-1819.	2.2	45
29	Nine-fold density multiplication of hcp lattice pattern by directed self-assembly of block copolymer. Polymer, 2009, 50, 4250-4256.	1.8	45
30	Spontaneous pinning of domain growth during spinodal decomposition of offâ€critical polymer mixtures. II. Scaling analysis. Journal of Chemical Physics, 1993, 98, 3528-3539.	1.2	44
31	Self-Sorting of Amphiphilic Copolymers for Self-Assembled Materials in Water: Polymers Can Recognize Themselves. Journal of the American Chemical Society, 2019, 141, 511-519.	6.6	43
32	Control of the Microdomain Orientation in Block Copolymer Thin Films with Homopolymers for Lithographic Application. Langmuir, 2007, 23, 6404-6410.	1.6	41
33	Analysis of structures of rubber-filler systems with combined scattering methods. Polymer Journal, 2013, 45, 10-19.	1.3	40
34	Homogenization of immiscible rubber/rubber polymer mixtures by uniaxial compression. Macromolecules, 1989, 22, 2293-2302.	2.2	38
35	Late stage spinodal decomposition in binary fluids: comparison between computer simulation and experimental results. Physica A: Statistical Mechanics and Its Applications, 1993, 198, 473-492.	1.2	38
36	Arm-Cleavable Microgel Star Polymers: A Versatile Strategy for Direct Core Analysis and Functionalization. Journal of the American Chemical Society, 2014, 136, 10254-10257.	6.6	36

#	Article	IF	CITATIONS
37	Slow spinodal decomposition in binary liquid mixtures of polymers. 2. Effects of molecular weight and transport mechanism. Macromolecules, 1987, 20, 2257-2264.	2.2	34
38	Molecular weight dependence of mobility in polymer blends. Polymer, 1992, 33, 2729-2739.	1.8	30
39	Competition between Micro- and Macrophase Separations in a Binary Mixture of Block Copolymers. A Dynamic Density Functional Study. Macromolecules, 2002, 35, 7473-7480.	2.2	30
40	Cylindrical Domains of Block Copolymers Developed via Ordering under Moving Temperature Gradient: Real-Space Analysis. Macromolecules, 2008, 41, 8789-8799.	2.2	30
41	Self-assembly of amphiphilic block pendant polymers as microphase separation materials and folded flower micelles. Polymer Chemistry, 2019, 10, 4954-4961.	1.9	30
42	Apparatus for measuring timeâ€resolved light scattering profiles from supercritical polymer solutions undergoing phase separation under high pressure. Review of Scientific Instruments, 1995, 66, 4066-4072.	0.6	29
43	Time evolution of dynamic shear moduli in a physical gelation process of 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol in polystyrene melt: Critical exponent and gel strength. Physical Review E, 2002, 65, 041401.	0.8	29
44	Combined Light Scattering and Laser Scanning Confocal Microscopy Studies of a Polymer Mixture Involving a Percolation-to-Cluster Transition. Macromolecules, 2000, 33, 9657-9665.	2.2	28
45	Inserting polyoxomolybdate cluster into poly(É›-caprolactone) to create a class of new heteropolymer: Synthesis and supramolecular structures. Polymer, 2011, 52, 1772-1780.	1.8	26
46	Computer simulation of the spinodal decomposition for a polydisperse polymer mixture. Physical Review E, 1993, 48, R647-R650.	0.8	25
47	Direct Observation on Spin-Coating Process of PS- <i>b</i> P2VP Thin Films. Macromolecules, 2016, 49, 3471-3477.	2.2	25
48	Macro- and Microphase Transitions in Binary Blends of Block Copolymers with Complementarily Asymmetric Compositionsâ€. Macromolecules, 2001, 34, 1707-1719.	2.2	24
49	Survey of period variations of superhumps in SU UMa-type dwarf novae. VI. The sixth year (2013–2014). Publication of the Astronomical Society of Japan, 2014, 66, .	1.0	24
50	Ordering of Cylindrical Domains of Block Copolymers under Moving Temperature Gradient: Separation of â—½T-Induced Ordering from Surface-Induced Ordering. Macromolecules, 2008, 41, 6787-6792.	2.2	23
51	Star Polymer Gels with Fluorinated Microgels via Star–Star Coupling and Cross-Linking for Water Purification. ACS Macro Letters, 2015, 4, 377-380.	2.3	23
52	Early Stage Spinodal Decomposition in Polymer Solution under High Pressure. Macromolecules, 1999, 32, 1809-1815.	2.2	22
53	Structure Factor of Semidilute Polymer Solution under Continuous Shear Flow:  Numerical Analysis of a Two-Fluid Model and Comparison with Experiments. Macromolecules, 2001, 34, 6461-6473.	2.2	22
54	Shear small-angle light scattering studies of shear-induced concentration fluctuations and steady state viscoelastic properties. Journal of Chemical Physics, 2008, 128, 164911.	1.2	22

#	Article	IF	CITATIONS
55	Formation of longâ€range stripe patterns with subâ€10â€nm halfâ€pitch from directed selfâ€assembly of block copolymer. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2297-2301.	2.4	22
56	Viscoelastic effects in relaxation processes of concentration fluctuations in dynamically asymmetric polymer blends. Physical Review E, 2002, 65, 021806.	0.8	21
57	Pressure-induced structural change of intermediate-range order in poly(4-methyl-1-pentene) melt. Physical Review E, 2012, 85, 021807.	0.8	21
58	Comparison in fractal dimension between those obtained from structure factor and viscoelasticity of gel networks of 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol in polystyrene melt at gel point. Journal of Chemical Physics, 2004, 121, 3323-3328.	1.2	20
59	Ordering Cylindrical Microdomains for Binary Blends of Block Copolymers with Graphoepitaxy. Macromolecular Rapid Communications, 2007, 28, 2137-2144.	2.0	20
60	Macroscopically oriented lamellar microdomains created by "cold zone-heating―method involving OOT. Polymer, 2008, 49, 5146-5157.	1.8	20
61	Ultra small-angle X-ray scattering studies on structural changes in micrometers upon uniaxial stretching of segmented polyurethaneureas. Polymer, 2009, 50, 1566-1576.	1.8	20
62	Self-Sorting of Amphiphilic Block-Pendant Homopolymers into Sphere or Rod Micelles in Water. Macromolecules, 2020, 53, 4942-4951.	2.2	20
63	Simultaneous small- and wide-angle X-ray scattering studies on the crystallization dynamics of poly(4-methylpentene-1) from melt. Polymer Journal, 2013, 45, 79-86.	1.3	18
64	Self-assembly and morphology of gel networks in I,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol/n-dibutylphthalate. Journal of Colloid and Interface Science, 2003, 262, 456-465.	5.0	17
65	Hierarchically self-organized filler particles in polymers: cascade evolution of dissipative structures to ordered structures. Polymer Journal, 2019, 51, 109-130.	1.3	17
66	ULTRA SMALL-ANGLE X-RAY SCATTERING STUDY OF FLOCCULATION IN SILICA-FILLED RUBBER. Rubber Chemistry and Technology, 2014, 87, 348-359.	0.6	16
67	<i>Fddd</i> Phase Boundary of Polystyrene- <i>block</i> -polyisoprene Diblock Copolymer Melts in the Polystyrene-Rich Region. Macromolecules, 2015, 48, 2211-2216.	2.2	16
68	Directed Self-assembly with Density Mmultiplication of Cage Silsesquioxane-containing Bblock Copolymer via Controlled Solvent Annealing. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 577-580.	0.1	15
69	Fluorous Gradient Copolymers via in-Situ Transesterification of a Perfluoromethacrylate in Tandem Living Radical Polymerization: Precision Synthesis and Physical Properties. Macromolecules, 2018, 51, 864-871.	2.2	15
70	Slow spinodal decomposition in binary liquid mixtures of polymers. V. Molecular weight dependence in the later stage of unmixing. Journal of Chemical Physics, 1992, 97, 6855-6863.	1.2	14
71	Which cartilage is regenerated, hyaline cartilage or fibrocartilage? Non-invasive ultrasonic evaluation of tissue-engineered cartilage. British Journal of Rheumatology, 2004, 43, 1106-1108.	2.5	14
72	Estimation of the mechanical property of meniscus using ultrasound: Examinations of native meniscus and effects of enzymatic digestion. Journal of Orthopaedic Research, 2007, 25, 884-893.	1.2	14

#	Article	IF	CITATIONS
73	Aggregation States of Poly(4-methylpentene-1) at a Solid Interface. Polymer Journal, 2019, 51, 247-255.	1.3	14
74	Sponge-like structures and their Gaussian curvatures in polymer mixtures and microemulsions. Progress in Colloid and Polymer Science, 1997, 106, 118-126.	0.5	14
75	Phase Separated Structures in a Binary Blend of Diblock Copolymers under an Extensional Force Field –Helical Domain Structure–. Journal of the Physical Society of Japan, 2004, 73, 1371-1374.	0.7	13
76	Ordering of Cylindrical Domain of Block Copolymers under Moving Temperature Gradient: Effects of Moving Rate. Macromolecules, 2008, 41, 6780-6786.	2.2	13
77	Sequential Synthesis of Coordination Polymersomes. Angewandte Chemie - International Edition, 2015, 54, 1139-1143.	7.2	13
78	Phase behavior and Li ⁺ Ion conductivity of styreneâ€ethylene oxide multiblock copolymer electrolytes. Polymers for Advanced Technologies, 2016, 27, 946-954.	1.6	13
79	Interface between a Polysulfone and Polyamide As Studied by Combined Neutron Reflectivity and Small-Angle Neutron Scattering Techniques. Macromolecules, 2000, 33, 8375-8387.	2.2	12
80	Viscoelastic effects on early stage of spinodal decomposition in dynamically asymmetric polymer blends. Journal of Chemical Physics, 2006, 124, 104904.	1.2	12
81	Time-resolved SAXS studies of self-assembling process of palladium nanoparticles in templates of polystyrene-block-polyisoprene melt: Effects of reaction fields on the self-assembly. Polymer, 2009, 50, 2696-2705.	1.8	12
82	Orderâ^'Disorder Transition of Nanocomposites: Pd Nanoparticles in Polystyrene- <i>block</i> -Polyisoprene Microdomain Templates. Macromolecules, 2009, 42, 5272-5277.	2.2	12
83	High-precision spin coater for a synchrotron radiation <i>in situ</i> GISAXS system: for the investigation of formation mechanisms of self-assembled structures in polymer thin films. Journal of Applied Crystallography, 2013, 46, 1610-1615.	1.9	12
84	Effects of mixing process on spatial distribution and coexistence of sulfur and zinc in vulcanized EPDM rubber. Polymer, 2021, 218, 123486.	1.8	12
85	Design guide of amphiphilic crystalline random copolymers for sub-10 nm microphase separation. Polymer Chemistry, 2021, 12, 501-510.	1.9	12
86	Butterfly patterns in crystalline polymers under uniaxial stretch. Physical Review E, 2007, 75, 061802.	0.8	11
87	Density Multiplication by Directed Self-assembly of Block Copolymer Binary Blends. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 229-233.	0.1	11
88	<i>Fddd</i> Structure in Polystyrene- <i>block</i> -polyisoprene Diblock Copolymer/Polystyrene Homopolymer Blends. Macromolecules, 2016, 49, 2257-2261.	2.2	11
89	Effect of Submicron Structures on the Mechanical Behavior of Polyethylene. Macromolecules, 2020, 53, 9097-9107.	2.2	11
90	Effects of Molecular Weight Distribution on the Dynamics of the Early Stage of Spinodal Decomposition. Macromolecules, 1994, 27, 6117-6123.	2.2	10

#	Article	IF	CITATIONS
91	Nonequilibrium helical-domain morphology in diblock copolymer systems. Polymer, 2001, 42, 8477-8481.	1.8	10
92	Precise small-angle X-ray scattering evaluation of the pore structures in track-etched membranes: Comparison with other convenient evaluation methods. Nuclear Instruments & Methods in Physics Research B, 2017, 394, 121-125.	0.6	10
93	Single-chain crosslinked polymers <i>via</i> the transesterification of folded polymers: from efficient synthesis to crystallinity control. Polymer Chemistry, 2020, 11, 5181-5190.	1.9	10
94	Amphiphilic random and random block terpolymers with PEG, octadecyl, and oleyl pendants for controlled crystallization and microphase separation. Polymer Chemistry, 2021, 12, 1439-1447.	1.9	10
95	Selective Coupling and Polymerization of Folded Polymer Micelles to Nanodomain Self-Assemblies. ACS Macro Letters, 2020, 9, 426-430.	2.3	9
96	Early-Stage Spinodal Decomposition in Ternary Blends Composed of a Random Copolymer and Homopolymers. Macromolecules, 1996, 29, 4134-4141.	2.2	8
97	Viscoelastic effects in dynamics of concentration fluctuations in dynamically asymmetric polymer blends. Journal of Applied Crystallography, 2003, 36, 642-645.	1.9	8
98	Effect of thermomechanical history on the crystallization of poly(etherâ€ <i>block</i> â€amide). Polymer Engineering and Science, 2008, 48, 2418-2425.	1.5	8
99	Consecutive living polymerization from cationic to radical: a straightforward yet versatile methodology for the precision synthesis of "cleavable―block copolymers with a hemiacetal ester junction. Polymer Chemistry, 2012, 3, 2193.	1.9	8
100	Directed self-assembly of block copolymers. Current Opinion in Chemical Engineering, 2013, 2, 88-94.	3.8	8
101	Influence of Temperature and Type of Solvents on the Microdomain Orientation of <scp>PS</scp> â€ <i>b</i> â€ <scp>P</scp> 2 <scp>VP</scp> Ultrathin Films by Solvent Annealing. Macromolecular Symposia, 2013, 327, 72-79.	0.4	8
102	Visualizing patterned thin films by grazing-incidence small-angle X-ray scattering coupled with computed tomography. Journal of Applied Crystallography, 2015, 48, 1645-1650.	1.9	8
103	Tricontinuous structure in a homopolymer–homopolymer–random-copolymer ternary mixture quenched under the tricritical point. Physical Review E, 1995, 52, 5142-5145.	0.8	7
104	Dynamics of Early Stage Spinodal Decomposition of Multicomponent Polymer Systems. Macromolecules, 1995, 28, 3240-3247.	2.2	7
105	Shear-induced phase separation in "nonentangled―oligomer mixture. Journal of Chemical Physics, 2004, 121, 7501-7504.	1.2	7
106	Later-Stage Spinodal Decomposition in Polymer Solution under High Pressure:  Analyses of Scaled Structure Factor. Macromolecules, 2005, 38, 10487-10493.	2.2	7
107	Effects of shear flow on a semidilute polymer solution under phase-separating condition. Polymer, 2006, 47, 7271-7281.	1.8	7
108	Computer simulation study on the shear-induced phase separation in semidilute polymer solutions in 3-dimensional space. Polymer, 2006, 47, 7846-7852.	1.8	7

#	Article	IF	CITATIONS
109	Quantitative comparison between dynamic structure factors obtained experimentally and those calculated with Doi-Onuki theory. Journal of Chemical Physics, 2007, 126, 064903.	1.2	7
110	Measurements of Phase Behavior for Polyethylene in Hydrocarbons, Halogenated Hydrocarbons, and Oxygen-Containing Hydrocarbons, at High Pressure and High Temperature. Journal of Chemical & Engineering Data, 2009, 54, 1585-1591.	1.0	7
111	Structural and Thermal Properties of Unpurified and Purified 12-Hydroxystearic Acid Solutions. Journal of Fiber Science and Technology, 2012, 68, 248-252.	0.0	7
112	Order–Order Transition Processes of Thin-Film Symmetric and Asymmetric PS- <i>b</i> -P2VP during Spin Coating. Macromolecules, 2018, 51, 10040-10051.	2.2	7
113	Improving grazing-incidence small-angle X-ray scattering–computed tomography images by total variation minimization. Journal of Applied Crystallography, 2020, 53, 140-147.	1.9	7
114	Multilayered Lamellar Materials and Thin Films by Instant Self-Assembly of Amphiphilic Random Copolymers. ACS Macro Letters, 2021, 10, 1524-1528.	2.3	7
115	Investigation of Interfacial Water Accumulation between Polypropylene Thin Film and Si Substrate by Neutron Reflectivity. Langmuir, 2021, 37, 14550-14557.	1.6	7
116	The Formation of Higher Order Structures of 1,3:2,4-cis-O-inside-bis-O-(p-methylbenzylidene)-D-sorbitol in Physical Gels of Molten Polymers and Organic Solvents Kobunshi Ronbunshu, 1998, 55, 613-627.	0.2	6
117	Later-stage spinodal decomposition in polymer solution under high pressure—analyses of qm and Im. Polymer, 2005, 46, 10782-10787.	1.8	6
118	STRUCTURE ANALYSES OF SWOLLEN RUBBER–CARBON BLACK SYSTEMS BY USING CONTRAST VARIATION SMALL-ANGLE NEUTRON SCATTERING. Rubber Chemistry and Technology, 2012, 85, 157-164.	0.6	6
119	Visualization of Individual Images in Patterned Organic–Inorganic Multilayers Using GISAXS-CT. Langmuir, 2017, 33, 4675-4681.	1.6	6
120	3D-TEM study on the novel bicontinuous microdomain structure. Soft Matter, 2017, 13, 8824-8828.	1.2	6
121	Effect of Preferential Orientation of Lamellae in the Interfacial Region between a Block Copolymer-based Pressure-Sensitive Adhesive and a Solid Substrate on the Peel Strength. Langmuir, 2018, 34, 2856-2864.	1.6	6
122	Concentration Fluctuations Induced by Orientation Fluctuations in Polymerâ^'Liquid Crystal Mixture. Macromolecules, 2006, 39, 6229-6232.	2.2	5
123	Study on Hierarchical Structure of Polyethylene by using USAXS, SAXS and WAXS. Kobunshi Ronbunshu, 2009, 66, 612-618.	0.2	5
124	The Formation of OTDD Network Structure in PSâ€ <i>b</i> â€Plâ€ <i>b</i> â€PDMS Triblock Terpolymer. Macromolecular Chemistry and Physics, 2017, 218, 1700008.	1.1	5
125	Amphiphilic Random Cyclocopolymers as Versatile Scaffolds for Ring-Functionalized and Self-Assembled Materials. Macromolecules, 2021, 54, 3987-3998.	2.2	5
126	Spatial inhomogeneity of chain orientation associated with strain-induced density fluctuations in polyethylene. Polymer Journal, 2022, 54, 243-248.	1.3	5

#	Article	IF	CITATIONS
127	Evaluation of interface curvature in complex fluids from scattered intensity. Physica A: Statistical Mechanics and Its Applications, 2000, 276, 22-29.	1.2	4
128	Pressure dependence of thermal fluctuation effects on the order–disorder transition of diblock copolymer solutions. Journal of Applied Crystallography, 2003, 36, 656-659.	1.9	4
129	Alkoxy-derived multiscale porous TiO2 gels probed by ultra-small-angle X-ray scattering and small-angle X-ray scattering. Journal of Sol-Gel Science and Technology, 2008, 46, 63-69.	1.1	4
130	Computational study of effects of uniaxial compression during processes of spinodal decomposition. Physical Review E, 1995, 52, 2247-2261.	0.8	3
131	Self-Assembling in Polymerization Processes of N-Isopropylacrylamide. Polymer Journal, 2007, 39, 1112-1116.	1.3	3
132	Computer simulation study on the shear-induced phase separation in semi-dilute polymer solutions by using lanniruberto–Marrucci model. Polymer, 2010, 51, 1853-1860.	1.8	3
133	Analyses of Hierarchical Structures of Soft Materials by Using Combined Scattering Methods. Nippon Gomu Kyokaishi, 2011, 84, 7-13.	0.0	3
134	Structure Analyses of Poly(styreneâ€≺i>ranâ€butadiene) Rubber Crosslinked by Sulfur with Smallâ€Angle Neutron Scattering. Macromolecular Symposia, 2015, 353, 11-14.	0.4	3
135	X-ray scattering study on the changes in the morphology of low-modulus polypropylene under cyclic uniaxial elongation. Polymer Journal, 2020, 52, 279-287.	1.3	3
136	Development of elastic recovering 4-methyl-1-pentene/propylene copolymer. Polymer, 2020, 191, 122269.	1.8	3
137	Neutron Reflectometry Tomography for Imaging and Depth Structure Analysis of Thin Films with In-Plane Inhomogeneity. Langmuir, 2021, 37, 196-203.	1.6	3
138	Influence of microstructural variations on morphology and separation properties of polybutadiene-based polyurethanes. RSC Advances, 2021, 11, 15449-15456.	1.7	3
139	Analyses of hierarchical structures in vulcanized SBR rubber by using contrast-variation USANS and SANS. Journal of Applied Crystallography, 2021, 54, 949-956.	1.9	3
140	Depth-Dependent Structural Analyses in PS- <i>b</i> -P2VP Thin Films as Revealed by Grazing Incidence Small Angle Scattering in the Tender Energy Region. Kobunshi Ronbunshu, 2017, 74, 109-113.	0.2	3
141	Artifact removal in the contour areas of SAXS-CT images by Tikhonov-L1 minimization. Journal of Applied Crystallography, 2021, 54, 1784-1792.	1.9	3
142	Structural development of dynamically asymmetric polymer blends under uniaxial stretching. Journal of Applied Crystallography, 2007, 40, s656-s661.	1.9	2
143	Ultra small angle X-ray scattering studies on density heterogeneity of linear low density polyethylene. Journal of Physics: Conference Series, 2011, 272, 012006.	0.3	2
144	Nanoscale bending movement of biological micro-object induced by femtosecond laser impulse and its detection by atomic force microscopy. Applied Physics Express, 2014, 7, 087002.	1.1	2

#	Article	IF	CITATIONS
145	Synchrotron Small-Angle X-ray Scattering of Relaxation Process in a Nonentangled Diblock Copolymer. Macromolecules, 2005, 38, 8481-8485.	2.2	1
146	Scattering studies of novel degradable block copolymers of strong segregation class. Science and Technology of Advanced Materials, 2006, 7, 589-594.	2.8	1
147	Computer Simulation Study on the Shear-Induced Phase Separation in Semi-Dilute Polymer Solutions by Using lanniruberto-Marrucci Model. Kobunshi Ronbunshu, 2007, 64, 324-327.	0.2	1
148	Structure Analyses of Swollen Rubber-carbon Black Systems by Contrast Variation SANS. Nippon Gomu Kyokaishi, 2010, 83, 390-394.	0.0	1
149	Directed assembly nanolithography. , 2014, , 287-314.		1
150	Analyses of Morphologies in Block Copolymer Thin Films by Grazing Incidence Small Angle X-ray Scattering. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 751-755.	0.1	1
151	Viscoelastic effects on dynamics of concentration fluctuations in semi-dilute polymer solution in the good solvent regime. Polymer, 2019, 179, 121622.	1.8	1
152	Molecular Weight Effect on the Transition Processes of a Symmetric PS- <i>b</i> -P2VP during Spin-Coating. Macromolecules, 2021, 54, 1017-1029.	2.2	1
153	Heterogeneous Density Fluctuation of Polyethylene under Uniaxial Stretch. Kobunshi Ronbunshu, 2014, 71, 573-579.	0.2	1
154	Dynamic Viscoelasticity in Sol and Gel States for 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol/molten Polystyrene Systems. Nihon Reoroji Gakkaishi, 2005, 33, 267-272.	0.2	1
155	Stress-Diffusion Coupling and Viscoelastic Effects on Early Stage Spinodal Decomposition in Polymer Solutions. E-Journal of Soft Materials, 2006, 2, 37-41.	2.0	0
156	Alignment of Cylindrical Microdomains on a Grating Substrate by Binary Blends of Polystyrene-Poly(methyl methacrylate). Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 505-510.	0.1	0
157	Concentration fluctuations induced by orientation fluctuations in polybutadiene–4-cyano-4'-n-octylbiphenyl mixtures. Journal of Applied Crystallography, 2007, 40, s662-s665.	1.9	Ο
158	Architecture dependence of thermal fluctuation effects on the order–disorder transition of block copolymer melts. Polymer, 2008, 49, 2979-2984.	1.8	0
159	Structure Analyses of a Rubber/Filler System Under Shear Flow by Using Time Resolved Ultra Small Angle X-ray Scattering. Kobunshi Ronbunshu, 2014, 71, 98-103.	0.2	0
160	Phase Separation Kinetics in Polymer Blends. , 2014, , 1-6.		0
161	Intermediate-Range Order in Structurally Disordered Systems:. Nihon Kessho Gakkaishi, 2016, 58, 48-53.	0.0	0
162	Structural Analyses of Blockcopolymer/Homopolymer Blends in Thin Films Using GI-SAXS. Kobunshi Ronbunshu, 2017, 74, 49-53.	0.2	0

#	Article	IF	CITATIONS
163	A study on the isothermal crystallization of poly(3-methylbutene-1). Polymer Journal, 2019, 51, 173-182.	1.3	Ο
164	Morphology in Blends of Rubbery Polymers. , 2014, , 1-8.		0
165	Blockcopolymer Lithography. Seikei-Kakou, 2014, 26, 247-252.	0.0	0
166	Hierarchical Structures in Soft Materials. Nippon Gomu Kyokaishi, 2018, 91, 365-369.	0.0	0
167	Basics and Applications of X-ray Scattering. Nippon Gomu Kyokaishi, 2019, 92, 57-62.	0.0	Ο
168	Quantum Beam Facilities and Their Application. Seikei-Kakou, 2020, 32, 43-47.	0.0	0