BerisÅ, av V Zloković

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5651465/publications.pdf

Version: 2024-02-01

274 papers 51,102 citations

99 h-index 217 g-index

290 all docs

290 docs citations

times ranked

290

37103 citing authors

#	Article	IF	Citations
1	The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron, 2008, 57, 178-201.	3.8	2,712
2	Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nature Reviews Neuroscience, 2011, 12, 723-738.	4.9	2,254
3	Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology, 2018, 14, 133-150.	4.9	1,731
4	Blood-Brain Barrier Breakdown in the Aging Human Hippocampus. Neuron, 2015, 85, 296-302.	3.8	1,436
5	RAGE mediates amyloid- \hat{l}^2 peptide transport across the blood-brain barrier and accumulation in brain. Nature Medicine, 2003, 9, 907-913.	15.2	1,277
6	Blood-Brain Barrier: From Physiology to Disease and Back. Physiological Reviews, 2019, 99, 21-78.	13.1	1,232
7	Clearance of Alzheimer's amyloid-β1-40 peptide from brain by LDL receptor–related protein-1 at the blood-brain barrier. Journal of Clinical Investigation, 2000, 106, 1489-1499.	3.9	1,213
8	Pericytes Control Key Neurovascular Functions and Neuronal Phenotype in the Adult Brain and during Brain Aging. Neuron, 2010, 68, 409-427.	3.8	1,192
9	Establishment and Dysfunction of the Blood-Brain Barrier. Cell, 2015, 163, 1064-1078.	13.5	1,146
10	Clearance systems in the brainâ€"implications for Alzheimer disease. Nature Reviews Neurology, 2015, 11, 457-470.	4.9	1,127
11	Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature, 2012, 485, 512-516.	13.7	1,019
12	Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nature Medicine, 2019, 25, 270-276.	15.2	987
13	Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends in Neurosciences, 2005, 28, 202-208.	4.2	856
14	Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nature Reviews Neuroscience, 2017, 18, 419-434.	4.9	842
15	Central nervous system pericytes in health and disease. Nature Neuroscience, 2011, 14, 1398-1405.	7.1	806
16	Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer's disease. Acta Neuropathologica, 2009, 118, 103-113.	3.9	769
17	Pericytes of the neurovascular unit: key functions and signaling pathways. Nature Neuroscience, 2016, 19, 771-783.	7.1	766
18	LRP/Amyloid Î ² -Peptide Interaction Mediates Differential Brain Efflux of AÎ ² Isoforms. Neuron, 2004, 43, 333-344.	3.8	752

#	Article	IF	Citations
19	The cytoprotective protein C pathway. Blood, 2007, 109, 3161-3172.	0.6	714
20	APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature, 2020, 581, 71-76.	13.7	705
21	apoE isoform–specific disruption of amyloid β peptide clearance from mouse brain. Journal of Clinical Investigation, 2008, 118, 4002-4013.	3.9	623
22	The role of brain vasculature in neurodegenerative disorders. Nature Neuroscience, 2018, 21, 1318-1331.	7.1	612
23	Endothelial Cell Protein C Receptor. Circulation Research, 2007, 100, 155-157.	2.0	601
24	Transport Pathways for Clearance of Human Alzheimer's Amyloid \hat{l}^2 -Peptide and Apolipoproteins E and J in the Mouse Central Nervous System. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 909-918.	2.4	576
25	P-glycoprotein deficiency at the blood-brain barrier increases amyloid-Â deposition in an Alzheimer disease mouse model. Journal of Clinical Investigation, 2005, 115, 3285-3290.	3.9	564
26	Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nature Medicine, 2003, 9, 338-342.	15.2	556
27	A multimodal RAGE-specific inhibitor reduces amyloid $\hat{l}^2\hat{a}$ emediated brain disorder in a mouse model of Alzheimer disease. Journal of Clinical Investigation, 2012, 122, 1377-1392.	3.9	507
28	GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nature Neuroscience, 2015, 18, 521-530.	7.1	496
29	Alzheimer's disease: A matter of blood–brain barrier dysfunction?. Journal of Experimental Medicine, 2017, 214, 3151-3169.	4.2	467
30	Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 216-227.	2.4	464
31	Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 710-717.	0.4	461
32	Vascular dysfunctionâ€"The disregarded partner of Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 158-167.	0.4	454
33	Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nature Medicine, 2018, 24, 313-325.	15.2	445
34	Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell, 2016, 19, 663-671.	5.2	437
35	ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nature Neuroscience, 2008, 11, 420-422.	7.1	409
36	Deficiency in Mural Vascular Cells Coincides with Blood–Brain Barrier Disruption in <scp>A</scp> lzheimer's Disease. Brain Pathology, 2013, 23, 303-310.	2.1	409

#	Article	IF	Citations
37	Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 887-900.	1.8	405
38	Perivascular spaces in the brain: anatomy, physiology and pathology. Nature Reviews Neurology, 2020, 16, 137-153.	4.9	405
39	Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nature Neuroscience, 2017, 20, 406-416.	7.1	383
40	Clearance of amyloid- \hat{l}^2 by circulating lipoprotein receptors. Nature Medicine, 2007, 13, 1029-1031.	15.2	381
41	RAGE (Yin) Versus LRP (Yang) Balance Regulates Alzheimer Amyloid Â-Peptide Clearance Through Transport Across the Blood-Brain Barrier. Stroke, 2004, 35, 2628-2631.	1.0	362
42	Central role for PICALM in amyloid- \hat{l}^2 blood-brain barrier transcytosis and clearance. Nature Neuroscience, 2015, 18, 978-987.	7.1	334
43	Role of the Blood-Brain Barrier in the Pathogenesis of Alzheimers Disease. Current Alzheimer Research, 2007, 4, 191-197.	0.7	333
44	Clearing amyloid through the blood-brain barrier. Journal of Neurochemistry, 2004, 89, 807-811.	2.1	324
45	Early-onset and Robust Cerebral Microvascular Accumulation of Amyloid β-Protein in Transgenic Mice Expressing Low Levels of a Vasculotropic Dutch/lowa Mutant Form of Amyloid β-Protein Precursor. Journal of Biological Chemistry, 2004, 279, 20296-20306.	1.6	315
46	Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nature Medicine, 2005, 11, 959-965.	15.2	274
47	Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Molecular Neurodegeneration, 2010, 5, 32.	4.4	274
48	Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathologica, 2013, 125, 111-120.	3.9	263
49	Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nature Neuroscience, 2019, 22, 1089-1098.	7.1	246
50	Activated Protein C Prevents Neuronal Apoptosis via Protease Activated Receptors 1 and 3. Neuron, 2004, 41, 563-572.	3.8	243
51	Activated protein C inhibits tissue plasminogen activator–induced brain hemorrhage. Nature Medicine, 2006, 12, 1278-1285.	15.2	243
52	lgG-Assisted Age-Dependent Clearance of Alzheimer's Amyloid Peptide by the Blood-Brain Barrier Neonatal Fc Receptor. Journal of Neuroscience, 2005, 25, 11495-11503.	1.7	238
53	SRF and myocardin regulate LRP-mediated amyloid- \hat{l}^2 clearance in brain vascular cells. Nature Cell Biology, 2009, 11, 143-153.	4.6	237
54	Coupling of Angiogenesis and Neurogenesis in Cultured Endothelial Cells and Neural Progenitor Cells after Stroke. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 764-771.	2.4	230

#	Article	IF	CITATIONS
55	Apolipoprotein J (clusterin) and Alzheimer's disease. Microscopy Research and Technique, 2000, 50, 305-315.	1.2	226
56	Cerebrovascular Effects of Apolipoprotein E. JAMA Neurology, 2013, 70, 440.	4.5	218
57	Lowâ€density lipoprotein receptorâ€related proteinâ€1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid βâ€peptide elimination from the brain. Journal of Neurochemistry, 2010, 115, 1077-1089.	2.1	212
58	Activated protein C: biased for translation. Blood, 2015, 125, 2898-2907.	0.6	212
59	Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovascular Research, 2018, 114, 1462-1473.	1.8	211
60	Neurovascular Dysfunction and Faulty Amyloid Â-Peptide Clearance in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a011452-a011452.	2.9	207
61	Tissue plasminogen activator neurovascular toxicity is controlled by activated protein C. Nature Medicine, 2004, 10, 1379-1383.	15.2	205
62	Anti-Inflammatory, Antithrombotic, and Neuroprotective Effects of Activated Protein C in a Murine Model of Focal Ischemic Stroke. Circulation, 2001, 103, 1799-1805.	1.6	202
63	Preventing dementia by preventing stroke: The Berlin Manifesto. Alzheimer's and Dementia, 2019, 15, 961-984.	0.4	200
64	Hypertension Induces Brain \hat{l}^2 -Amyloid Accumulation, Cognitive Impairment, and Memory Deterioration Through Activation of Receptor for Advanced Glycation End Products in Brain Vasculature. Hypertension, 2012, 60, 188-197.	1.3	199
65	The Pericyte: A Forgotten Cell Type with Important Implications for <scp>A</scp> Izheimer's Disease?. Brain Pathology, 2014, 24, 371-386.	2.1	198
66	Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer's phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 823-828.	3.3	189
67	Blood–spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1035-42.	3.3	188
68	Circulating Antibody against Tumor Necrosis Factor–Alpha Protects Rat Brain from Reperfusion Injury. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 52-58.	2.4	179
69	Neurodegeneration and the neurovascular unit. Nature Medicine, 2010, 16, 1370-1371.	15.2	174
70	Consensus statement for diagnosis of subcortical small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 6-25.	2.4	173
71	Blood–Spinal Cord Barrier Pericyte Reductions Contribute to Increased Capillary Permeability. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1841-1852.	2.4	171
72	Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid- \hat{l}^2 42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Molecular Neurodegeneration, 2018, 13, 57.	4.4	164

#	Article	IF	CITATIONS
73	Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer's disease: the role, regulation and restoration of LRP1. Frontiers in Aging Neuroscience, 2015, 7, 136.	1.7	160
74	Brain imaging of neurovascular dysfunction in Alzheimer's disease. Acta Neuropathologica, 2016, 131, 687-707.	3.9	160
75	Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. Journal of Clinical Investigation, 2009, 119, 3437-49.	3.9	158
76	Preferential Susceptibility of Brain Tumors to the Antiangiogenic Effects of an $\hat{l}_{\pm \nu}$ Integrin Antagonist. Neurosurgery, 2001, 48, 151-157.	0.6	157
77	Differential Regulation of Leptin Transport by the Choroid Plexus and Blood-Brain Barrier and High Affinity Transport Systems for Entry into Hypothalamus and Across the Blood-Cerebrospinal Fluid Barrier*. Endocrinology, 2000, 141, 1434-1441.	1.4	147
78	Two-Photon Imaging of Astrocytic Ca2+ Signaling and the Microvasculature in Experimental Mice Models of Alzheimer's Disease. Annals of the New York Academy of Sciences, 2007, 1097, 40-50.	1.8	145
79	Isoformâ€Specific Effects of Apolipoproteins E2, E3, and E4 on Cerebral Capillary Sequestration and Bloodâ€Brain Barrier Transport of Circulating Alzheimer's Amyloid β. Journal of Neurochemistry, 1997, 69, 1995-2004.	2.1	138
80	New Therapeutic Targets in the Neurovascular Pathway in Alzheimer's Disease. Neurotherapeutics, 2008, 5, 409-414.	2.1	138
81	Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood $A\hat{l}^2$ clearance in a mouse model of \hat{l}^2 -amyloidosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15502-15507.	3.3	138
82	Cerebrovascular transport of Alzheimer's amyloid \hat{l}^2 and apolipoproteins J and E: Possible anti-amyloidogenic role of the blood-brain barrier. Life Sciences, 1996, 59, 1483-1497.	2.0	135
83	Cytoprotective protein C pathways and implications for stroke and neurological disorders. Trends in Neurosciences, 2011, 34, 198-209.	4.2	129
84	A single-cell atlas of the normal and malformed human brain vasculature. Science, 2022, 375, eabi7377.	6.0	129
85	Cerebrovascular Accumulation and Increased Bloodâ€Brain Barrier Permeability to Circulating Alzheimer's Amyloid β Peptide in Aged Squirrel Monkey with Cerebral Amyloid Angiopathy. Journal of Neurochemistry, 1998, 70, 210-215.	2.1	128
86	Tissue Plasminogen Activator (tPA) Deficiency Exacerbates Cerebrovascular Fibrin Deposition and Brain Injury in a Murine Stroke Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2801-2806.	1.1	127
87	Circulating amyloid-β peptide crosses the blood–brain barrier in aged monkeys and contributes to Alzheimer's disease lesions. Vascular Pharmacology, 2002, 38, 303-313.	1.0	127
88	Cerebrovascular permeability to peptides: manipulations of transport systems at the blood-brain barrier. Pharmaceutical Research, 1995, 12, 1395-1406.	1.7	124
89	Transport of Leucine-Enkephalin Across the Blood-Brain Barrier in the Perfused Guinea Pig Brain. Journal of Neurochemistry, 1987, 49, 310-315.	2.1	120
90	Cellular and Molecular Neurosurgery: Pathways from Concept to Reality-Part II: Vector Systems and Delivery Methodologies for Gene Therapy of the Central Nervous System. Neurosurgery, 1997, 40, 805-813.	0.6	117

#	Article	IF	Citations
91	Final Results of the RHAPSODY Trial: A Multiâ€Center, Phase 2 Trial Using a Continual Reassessment Method to Determine the Safety and Tolerability of 3K3Aâ€APC, A Recombinant Variant of Human Activated Protein C, in Combination with Tissue Plasminogen Activator, Mechanical Thrombectomy or both in Moderate to Severe Acute Ischemic Stroke. Annals of Neurology, 2019, 85, 125-136.	2.8	113
92	Myocardin Is Sufficient for a Smooth Muscle-Like Contractile Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1505-1510.	1.1	112
93	Blood-brain barrier permeability to leucine-enkephalin,d-Alanine2-d-leucine5-enkephalin and their N-terminal amino acid (tyrosine). Brain Research, 1985, 336, 125-132.	1.1	111
94	Protein C anticoagulant and cytoprotective pathways. International Journal of Hematology, 2012, 95, 333-345.	0.7	110
95	Chronic Nicotine Treatment Enhances Focal Ischemic Brain Injury and Depletes Free Pool of Brain Microvascular Tissue Plasminogen Activator in Rats. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 136-146.	2.4	109
96	Vascular contributions to cognitive impairment and dementia (VCID): A report from the 2018 National Heart, Lung, and Blood Institute and National Institute of Neurological Disorders and Stroke Workshop. Alzheimer's and Dementia, 2020, 16, 1714-1733.	0.4	108
97	Activated protein C alters cytosolic calcium flux in human brain endothelium via binding to endothelial protein C receptor and activation of protease activated receptor-1. Blood, 2003, 101, 4797-4801.	0.6	107
98	A simple method for isolation and characterization of mouse brain microvascular endothelial cells. Journal of Neuroscience Methods, 2003, 130, 53-63.	1.3	106
99	Activated Protein C Promotes Neovascularization and Neurogenesis in Postischemic Brain via Protease-Activated Receptor 1. Journal of Neuroscience, 2008, 28, 12788-12797.	1.7	104
100	Recommendations of the Alzheimer's Disease–Related Dementias Conference. Neurology, 2014, 83, 851-860.	1.5	103
101	Neurovascular Defects and Faulty Amyloid- \hat{l}^2 Vascular Clearance in Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 33, S87-S100.	1.2	100
102	Cellular and Molecular Neurosurgery: Pathways from Concept to Reality-Part I: Target Disorders and Concept Approaches to Gene Therapy of the Central Nervous System. Neurosurgery, 1997, 40, 789-804.	0.6	97
103	Shedding of soluble platelet-derived growth factor receptor- \hat{l}^2 from human brain pericytes. Neuroscience Letters, 2015, 607, 97-101.	1.0	97
104	Neurovascular Pathways and Alzheimer Amyloid β-peptide. Brain Pathology, 2005, 15, 78-83.	2.1	95
105	Protein S controls hypoxic/ischemic blood-brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. Blood, 2010, 115, 4963-4972.	0.6	95
106	Brain capillary endothelium and choroid plexus epithelium regulate transport of transferrinâ€bound and free iron into the rat brain. Journal of Neurochemistry, 2004, 88, 813-820.	2.1	94
107	Activated protein C, protease activated receptor 1, and neuroprotection. Blood, 2018, 132, 159-169.	0.6	94
108	Permeability of the blood-cerebrospinal fluid and blood-brain barriers to thyrotropin-releasing hormone. Brain Research, 1985, 358, 191-199.	1.1	93

#	Article	IF	CITATIONS
109	Relationship Between Cyclophilin A Levels and Matrix Metalloproteinase 9 Activity in Cerebrospinal Fluid of Cognitively Normal Apolipoprotein E4 Carriers and Blood-Brain Barrier Breakdown. JAMA Neurology, 2013, 70, 1198.	4.5	93
110	Cerebrospinal Fluid Biomarkers of Neurovascular Dysfunction in Mild Dementia and Alzheimer'S Disease. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1055-1068.	2.4	92
111	Brain Clearance of Alzheimer's Amyloid-Î ² 40 in the Squirrel Monkey: A SPECT Study in a Primate Model of Cerebral Amyloid Angiopathy. Journal of Drug Targeting, 2002, 10, 359-368.	2.1	89
112	3K3A–activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice. Nature Medicine, 2016, 22, 1050-1055.	15.2	88
113	Cranial Suture Regeneration Mitigates Skull and Neurocognitive Defects in Craniosynostosis. Cell, 2021, 184, 243-256.e18.	13.5	88
114	Optimal acquisition and modeling parameters for accurate assessment of low K _{trans} blood-brain barrier permeability using dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine, 2016, 75, 1967-1977.	1.9	87
115	Protein S Confers Neuronal Protection During Ischemic/Hypoxic Injury in Mice. Circulation, 2003, 107, 1791-1796.	1.6	86
116	Kinetic Analysis of Leucine-Enkephalin Cellular Uptake at the Luminal Side of the Blood-Brain Barrier of an In Situ Perfused Guinea-Pig Brain. Journal of Neurochemistry, 1989, 53, 1333-1340.	2.1	85
117	Activated protein C: Potential therapy for severe sepsis, thrombosis, and stroke. Seminars in Hematology, 2002, 39, 197-205.	1.8	85
118	Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor- \hat{l}^2 signaling. PLoS ONE, 2017, 12, e0176225.	1.1	85
119	Blood-brain barrier uptake of the 40 and 42 amino acid sequences of circulating Alzheimer's amyloid \hat{l}^2 in guinea pigs. Neuroscience Letters, 1996, 206, 157-160.	1.0	84
120	Neuroprotective activities of activated protein C mutant with reduced anticoagulant activity. European Journal of Neuroscience, 2009, 29, 1119-1130.	1.2	83
121	PAR1 biased signaling is required for activated protein C in vivo benefits in sepsis and stroke. Blood, 2018, 131, 1163-1171.	0.6	81
122	Role of clusterin in the brain vascular clearance of amyloid- \hat{l}^2 . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8681-8682.	3.3	79
123	Blood-Brain Barrier Permeability and Gadolinium. JAMA Neurology, 2016, 73, 13.	4.5	77
124	APOE4 accelerates advanced-stage vascular and neurodegenerative disorder in old Alzheimer's mice via cyclophilin A independently of amyloid-β. Nature Aging, 2021, 1, 506-520.	5.3	77
125	Recombinant murine-activated protein C is neuroprotective in a murine ischemic stroke model. Blood Cells, Molecules, and Diseases, 2003, 30, 271-276.	0.6	71
126	Brain delivery of supplemental docosahexaenoic acid (DHA): A randomized placebo-controlled clinical trial. EBioMedicine, 2020, 59, 102883.	2.7	70

#	Article	IF	CITATIONS
127	Presence and Functional Activity of the Aryl Hydrocarbon Receptor in Isolated Murine Cerebral Vascular Endothelial Cells and Astrocytes. NeuroToxicology, 2004, 25, 605-616.	1.4	68
128	Evidence for the Existence of a Sodium-dependent Glutathione (GSH) Transporter. Journal of Biological Chemistry, 1996, 271, 9754-9758.	1.6	67
129	Functional recovery after embolic stroke in rodents by activated protein C. Annals of Neurology, 2005, 58, 474-477.	2.8	67
130	An Activated Protein C Analog With Reduced Anticoagulant Activity Extends the Therapeutic Window of Tissue Plasminogen Activator for Ischemic Stroke in Rodents. Stroke, 2012, 43, 2444-2449.	1.0	65
131	Endothelial Protein C Receptor-Assisted Transport of Activated Protein C across the Mouse Blood—Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 25-33.	2.4	64
132	Impaired Lipoprotein Receptor-Mediated Peripheral Binding of Plasma Amyloid- \hat{l}^2 is an Early Biomarker for Mild Cognitive Impairment Preceding Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 25-34.	1.2	63
133	ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies. BMC Medical Imaging, 2015, 15, 19.	1.4	63
134	Negative regulation of NF- \hat{l}^2 B activity by brain-specific TRIpartite Motif protein 9. Nature Communications, 2014, 5, 4820.	5.8	62
135	Phase 1 Safety, Tolerability and Pharmacokinetics of 3K3A-APC in Healthy Adult Volunteers. Current Pharmaceutical Design, 2014, 19, 7479-7485.	0.9	61
136	Experimental chronic cerebral hypoperfusion results in decreased pericyte coverage and increased blood–brain barrier permeability in the corpus callosum. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 240-250.	2.4	60
137	Associations between Vascular Function and Tau PET Are Associated with Global Cognition and Amyloid. Journal of Neuroscience, 2020, 40, 8573-8586.	1.7	60
138	Remodeling after stroke. Nature Medicine, 2006, 12, 390-391.	15.2	59
139	Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin A. Journal of Experimental Medicine, 2021, 218, .	4.2	59
140	Expression of Tissue Plasminogen Activator in Cerebral Capillaries. Neurosurgery, 1995, 37, 955-960.	0.6	58
141	Method for measurement of the blood–brain barrier permeability in the perfused mouse brain: application to amyloid-β peptide in wild type and Alzheimer's Tg2576 mice. Journal of Neuroscience Methods, 2004, 138, 233-242.	1.3	57
142	Protein S Protects Neurons from Excitotoxic Injury by Activating the TAM Receptor Tyro3–Phosphatidylinositol 3-Kinase–Akt Pathway through Its Sex Hormone-Binding Globulin-Like Region. Journal of Neuroscience, 2010, 30, 15521-15534.	1.7	57
143	Vascular disorder in Alzheimer's disease: role in pathogenesis of dementia and therapeutic targets. Advanced Drug Delivery Reviews, 2002, 54, 1553-1559.	6.6	56
144	Activated Protein C Analog Protects From Ischemic Stroke and Extends the Therapeutic Window of Tissue-Type Plasminogen Activator in Aged Female Mice and Hypertensive Rats. Stroke, 2013, 44, 3529-3536.	1.0	56

#	Article	IF	CITATIONS
145	Channelrhodopsin Excitation Contracts Brain Pericytes and Reduces Blood Flow in the Aging Mouse Brain in vivo. Frontiers in Aging Neuroscience, 2020, 12, 108.	1.7	56
146	Activated Protein C is Neuroprotective and Mediates New Blood Vessel Formation and Neurogenesis After Controlled Cortical Impact. Neurosurgery, 2010, 66, 165-172.	0.6	55
147	3K3A-activated protein C blocks amyloidogenic BACE1 pathway and improves functional outcome in mice. Journal of Experimental Medicine, 2019, 216, 279-293.	4.2	55
148	An Activated Protein C Analog Stimulates Neuronal Production by Human Neural Progenitor Cells via a PAR1-PAR3-S1PR ₁ -Akt Pathway. Journal of Neuroscience, 2013, 33, 6181-6190.	1.7	54
149	Remote control of BBB: A tale of exosomes and microRNA. Cell Research, 2017, 27, 849-850.	5.7	54
150	Clearance of interstitial fluid (ISF) and CSF (CLIC) groupâ€"part of Vascular Professional Interest Area (PIA). Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12053.	1.2	53
151	Differential Neuroprotection and Risk for Bleeding From Activated Protein C With Varying Degrees of Anticoagulant Activity. Stroke, 2009, 40, 1864-1869.	1.0	52
152	Methamphetamine causes sustained depression in cerebral blood flow. Brain Research, 2011, 1373, 91-100.	1.1	50
153	Preclinical Safety and Pharmacokinetic Profile of 3K3A-APC, a Novel, Modified Activated Protein C for Ischemic Stroke. Current Pharmaceutical Design, 2012, 18, 4215-4222.	0.9	50
154	Acute Ablation of Cortical Pericytes Leads to Rapid Neurovascular Uncoupling. Frontiers in Cellular Neuroscience, 2020, 14, 27.	1.8	50
155	Activated protein C and ischemic stroke. Critical Care Medicine, 2004, 32, S247-S253.	0.4	47
156	Strategies to Circumvent Vascular Barriers of the Central Nervous System. Neurosurgery, 1998, 43, 877-878.	0.6	46
157	Transport, uptake, and metabolism of blood-borne vasopressin by the blood-brain barrier. Brain Research, 1992, 590, 213-218.	1.1	45
158	The promise of protein C. Blood Cells, Molecules, and Diseases, 2006, 36, 211-216.	0.6	45
159	Blood-Brain Barrier: A Dual Life of MFSD2A?. Neuron, 2014, 82, 728-730.	3.8	45
160	In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nature Protocols, 2018, 13, 1377-1402.	5. 5	45
161	Blood–brain barrier link to human cognitive impairment and Alzheimer's disease. , 2022, 1, 108-115.		45
162	Transport of Circulating Reduced Glutathione at the Basolateral Side of the Anterior Lens Epithelium: Physiologic Importance and Manipulations. Experimental Eye Research, 1996, 62, 29-38.	1.2	44

#	Article	IF	CITATIONS
163	Cytoprotective-selective activated protein C therapy for ischaemic stroke. Thrombosis and Haemostasis, 2014, 112, 883-892.	1.8	43
164	TRIM9-Mediated Resolution of Neuroinflammation Confers Neuroprotection upon Ischemic Stroke in Mice. Cell Reports, 2019, 27, 549-560.e6.	2.9	43
165	A novel sensitive assay for detection of a biomarker of pericyte injury in cerebrospinal fluid. Alzheimer's and Dementia, 2020, 16, 821-830.	0.4	43
166	Impaired spine formation and learning in GPCR kinase 2 interacting protein-1 (GIT1) knockout mice. Brain Research, 2010, 1317, 218-226.	1.1	42
167	Brain Capillary Tissue Plasminogen Activator in a Diabetes Stroke Model. Stroke, 1996, 27, 712-719.	1.0	41
168	Identification and therapeutic rescue of autophagosome and glutamate receptor defects in C9ORF72 and sporadic ALS neurons. JCl Insight, 2019, 4, .	2.3	37
169	Blood-brain barrier permeability to dipeptides and their constituent amino acids. Brain Research, 1983, 271, 65-71.	1.1	36
170	Thrombomodulin Expression in Bovine Brain Capillaries. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 3139-3146.	1.1	36
171	Activated protein C analog with reduced anticoagulant activity improves functional recovery and reduces bleeding risk following controlled cortical impact. Brain Research, 2010, 1347, 125-131.	1.1	36
172	Neurovascular Unit: Basic and Clinical Imaging with Emphasis on Advantages of Ferumoxytol. Neurosurgery, 2018, 82, 770-780.	0.6	35
173	Cereport (RMP-7) increases the permeability of human brain microvascular endothelial cell monolayers. Pharmaceutical Research, 1999, 16, 1360-1365.	1.7	34
174	Mitigating Antagonism between Transcription and Proliferation Allows Near-Deterministic Cellular Reprogramming. Cell Stem Cell, 2019, 25, 486-500.e9.	5.2	34
175	Speciesâ€dependent neuroprotection by activated protein C mutants with reduced anticoagulant activity. Journal of Neurochemistry, 2009, 109, 116-124.	2.1	33
176	A Lipoprotein Receptor Cluster IV Mutant Preferentially Binds Amyloid- \hat{l}^2 and Regulates Its Clearance from the Mouse Brain. Journal of Biological Chemistry, 2013, 288, 15154-15166.	1.6	33
177	Activated protein C promotes neuroprotection: mechanisms and translation to the clinic. Thrombosis Research, 2016, 141, S62-S64.	0.8	33
178	Saturable mechanism for delta sleep-inducing peptide (DSIP) at the blood-brain barrier of the vascularly perfused guinea pig brain. Peptides, 1989, 10, 249-254.	1.2	32
179	2016 Scientific Sessions Sol Sherry Distinguished Lecturer in Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2143-2151.	1.1	32
180	Attenuation of brain injury and reduction of neuron-specific enolase by nicardipine in systemic circulation following focal ischemia and reperfusion in a rat model. Journal of Neurosurgery, 1997, 87, 731-737.	0.9	31

#	Article	IF	CITATIONS
181	Retinal nerve fiber layer thickness predicts CSF amyloid/tau before cognitive decline. PLoS ONE, 2020, 15, e0232785.	1.1	31
182	Vascular Plasticity and Cognition During Normal Aging and Dementia. JAMA Neurology, 2015, 72, 495.	4.5	30
183	Comparison Between Blood-Brain Barrier Water Exchange Rate and Permeability to Gadolinium-Based Contrast Agent in an Elderly Cohort. Frontiers in Neuroscience, 2020, 14, 571480.	1.4	30
184	A Simple Technique to Determine Glutathione (GSH) Levels and Synthesis in Ocular Tissues as GSH-bimane Adduct: Application to Normal and Galactosemic Guinea-pigs. Experimental Eye Research, 1993, 56, 45-50.	1.2	29
185	Passage of delta sleep-inducing peptide (DSIP) across the blood-cerebrospinal fluid barrier. Peptides, 1988, 9, 533-538.	1.2	28
186	Unidirectional uptake of enkephalins at the blood-tissue interface of the blood-cerebrospinal fluid barrier: a saturable mechanism. Regulatory Peptides, 1988, 20, 33-44.	1.9	27
187	Immunohistochemical Localization of Tissue Plasminogen Activator in Vascular Endothelium of Stroke-prone Regions of the Rat Brain. Neurosurgery, 1998, 43, 909-913.	0.6	27
188	Endovascular Restorative Neurosurgery: A Novel Concept for Molecular and Cellular Therapy of the Nervous System. Neurosurgery, 2003, 52, 402-413.	0.6	27
189	Detection of Brain Tumor Invasion and Micrometastasis in Vivo by Expression of Enhanced Green Fluorescent Protein. Neurosurgery, 1998, 43, 1437-1442.	0.6	27
190	Exogenous microglia enter the brain and migrate into ischaemic hippocampal lesions. Neuroscience Letters, 1999, 272, 127-130.	1.0	25
191	Activated protein C analog promotes neurogenesis and improves neurological outcome after focal ischemic stroke in mice via protease activated receptor 1. Brain Research, 2013, 1507, 97-104.	1.1	25
192	Cellular Uptake and Transport of Methylprednisolone at the Blood-Brain Barrier. Neurosurgery, 1996, 38, 348-354.	0.6	24
193	Lack of Smad or Notch Leads to a Fatal Game of Brain Pericyte Hopscotch. Developmental Cell, 2011, 20, 279-280.	3.1	24
194	From the liver to the blood–brain barrier: An interconnected system regulating brain amyloidâ€Î² levels. Journal of Neuroscience Research, 2011, 89, 967-968.	1.3	24
195	Permeability imaging as a predictor of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 973-979.	2.4	24
196	A lymphatic waste-disposal system implicated in Alzheimer's disease. Nature, 2018, 560, 172-174.	13.7	23
197	Undetectable gadolinium brain retention in individuals with an ageâ€dependent bloodâ€brain barrier breakdown in the hippocampus and mild cognitive impairment. Alzheimer's and Dementia, 2019, 15, 1568-1575.	0.4	22
198	Functional connectivity among brain regions affected in Alzheimer's disease is associated with CSF TNF-α in APOE4 carriers. Neurobiology of Aging, 2020, 86, 112-122.	1.5	22

#	Article	IF	CITATIONS
199	Air Pollution Particulate Matter Exposure and Chronic Cerebral Hypoperfusion and Measures of White Matter Injury in a Murine Model. Environmental Health Perspectives, 2021, 129, 87006.	2.8	22
200	In vivo approaches for studying peptide interactions at the blood $\hat{a}\in$ " brain barrier. Journal of Controlled Release, 1990, 13, 185-201.	4.8	21
201	Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer's disease. Neurobiology of Disease, 2020, 136, 104745.	2.1	21
202	Brain Injury and Cerebrovascular Fibrin Deposition Correlate with Reduced Antithrombotic Brain Capillary Functions in a Hypertensive Stroke Model. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 998-1009.	2.4	20
203	Combined neurothrombectomy or thrombolysis with adjunctive delivery of 3K3A-activated protein C in acute ischemic stroke. Frontiers in Cellular Neuroscience, 2015, 9, 344.	1.8	20
204	Microglia have a grip on brain microvasculature. Nature Communications, 2021, 12, 5290.	5.8	20
205	Blood-to-lens Transport of Reduced Glutathione in an In Situ Perfused Guinea-pig Eye. Experimental Eye Research, 1994, 59, 487-496.	1.2	19
206	Species-specific anticoagulant and mitogenic activities of murine protein S. Haematologica, 2009, 94, 1721-1731.	1.7	19
207	Early neuroinflammation is associated with lower amyloid and tau levels in cognitively normal older adults. Brain, Behavior, and Immunity, 2021, 94, 299-307.	2.0	19
208	Pericyte constriction underlies capillary derecruitment during hyperemia in the setting of arterial stenosis. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H255-H263.	1.5	18
209	A Review of Translational Magnetic Resonance Imaging in Human and Rodent Experimental Models of Small Vessel Disease. Translational Stroke Research, 2021, 12, 15-30.	2.3	18
210	The small HDL particle hypothesis of Alzheimer's disease. Alzheimer's and Dementia, 2023, 19, 391-404.	0.4	18
211	Brain barriers and their potential role in migraine pathophysiology. Journal of Headache and Pain, 2022, 23, 16.	2.5	17
212	Imaging subtle leaks in the blood–brain barrier in the aging human brain: potential pitfalls, challenges, and possible solutions. GeroScience, 2022, 44, 1339-1351.	2.1	17
213	NIH workshop report on the trans-agency blood–brain interface workshop 2016: exploring key challenges and opportunities associated with the blood, brain and their interface. Fluids and Barriers of the CNS, 2017, 14, 12.	2.4	16
214	Short-term fish oil supplementation applied in presymptomatic stage of Alzheimer's disease enhances microglial/macrophage barrier and prevents neuritic dystrophy in parietal cortex of 5xFAD mouse model. PLoS ONE, 2019, 14, e0216726.	1.1	16
215	<i>APOE4</i> Accelerates Development of Dementia After Stroke. Stroke, 2020, 51, 699-700.	1.0	16
216	Corneal Transport of Circulating Glutathione in Normal and Galactosemic Guinea Pigs. Cornea, 1999, 18, 321.	0.9	16

#	Article	IF	CITATIONS
217	Chronic amphetamine intoxication and the blood-brain barrier permeability to inert polar molecules studied in the vascularly perfused guinea pig brain. Journal of the Neurological Sciences, 1989, 94, 41-50.	0.3	15
218	Can adjunctive therapies augment the efficacy of endovascular thrombolysis? A potential role for activated protein C. Neuropharmacology, 2018, 134, 293-301.	2.0	15
219	Prenatal disruption of blood–brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113310119.	3.3	15
220	Transport of dopamine at the blood-brain barrier of the guinea pig: inhibition by psychotropic drugs and nicotine. Pharmaceutical Research, 1996, 13, 290-295.	1.7	14
221	Air Pollution Particulate Matter Amplifies White Matter Vascular Pathology and Demyelination Caused by Hypoperfusion. Frontiers in Immunology, 2021, 12, 785519.	2.2	14
222	Special topic section: linkages among cerebrovascular, cardiovascular, and cognitive disorders: Preventing dementia by preventing stroke: The Berlin Manifesto. International Journal of Stroke, 2019, , 174749301987191.	2.9	13
223	Therapeutic TVs for Crossing Barriers in the Brain. Cell, 2020, 182, 267-269.	13.5	13
224	Evidence that blood–CSF barrier transport, but not inflammatory biomarkers, change in migraine, while CSF sVCAM1 associates with migraine frequency and CSF fibrinogen. Headache, 2021, 61, 536-545.	1.8	13
225	An in situ perfused guinea-pig eye model for blood-ocular transport studies: Application to amino acids. Experimental Eye Research, 1992, 54, 471-477.	1.2	12
226	Protection of ischemic white matter and oligodendrocytes in mice by 3K3A-activated protein C. Journal of Experimental Medicine, 2022, 219, .	4.2	12
227	Stroke Treatment With PAR-1 Agents to Decrease Hemorrhagic Transformation. Frontiers in Neurology, 2021, 12, 593582.	1.1	11
228	Low de novo Glutathione Synthesis from Circulating Sulfur Amino Acids in the Lens Epithelium. Experimental Eye Research, 1997, 64, 615-626.	1.2	10
229	Intravenous infusion of RMP-7 increases ocular uptake of ganciclovir. Pharmaceutical Research, 1997, 14, 80-85.	1.7	9
230	Neurotoxicity of the anticoagulant-selective E149A-activated protein C variant after focal ischemic stroke in mice. Blood Cells, Molecules, and Diseases, 2013, 51, 104-108.	0.6	9
231	7T multi-shell hybrid diffusion imaging (HYDI) for mapping brain connectivity in mice. Proceedings of SPIE, 2015, 9413, .	0.8	9
232	PROTECTIVE EFFECTS OF GLUCAGON DURING THE ANAPHYLACTIC RESPONSE IN GUINEAâ€PIG ISOLATED HEART. British Journal of Pharmacology, 1982, 76, 483-489.	2.7	8
233	3K3A-Activated Protein C Protects the Blood-Brain Barrier and Neurons From Accelerated Ischemic Injury Caused by Pericyte Deficiency in Mice. Frontiers in Neuroscience, 2022, 16, 841916.	1.4	8
234	Characterization of perivascular space pathology in a rat model of cerebral small vessel disease by <i>in vivo</i> magnetic resonance imaging. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1813-1826.	2.4	8

#	Article	IF	CITATIONS
235	Measurement of Thrombomodulin mRNA Expression in Brain Capillaries by Polymerase Chain Reaction. Thrombosis Research, 1998, 91, 191-197.	0.8	7
236	Retroviral Vector-Mediated Transfer and Expression of Human Tissue Plasminogen Activator cDNA in Bovine Brain Endothelial Cells. Neurosurgery, 1999, 45, 962-970.	0.6	7
237	How the brain regulates its own immune system. Nature Neuroscience, 2022, 25, 532-534.	7.1	7
238	Liver and lens glutathione and cysteine regulation in galactose-fed guinea pigs. Current Eye Research, 1997, 16, 365-371.	0.7	6
239	Rat Brain Capillary Thrombomodulin. Thrombosis Research, 1998, 92, 213-219.	0.8	6
240	Prion Protein Antagonists Rescue Alzheimer's Amyloid-β-Related Cognitive Deficits. Trends in Molecular Medicine, 2019, 25, 74-76.	3 . 5	5
241	Investigating the blood–spinal cord barrier in preclinical models: a systematic review of in vivo imaging techniques. Spinal Cord, 2021, 59, 596-612.	0.9	5
242	Apolipoprotein J (clusterin) and Alzheimer's disease., 2000, 50, 305.		5
243	Neurovascular and Immuno-Imaging: From Mechanisms to Therapies. Proceedings of the Inaugural Symposium. Frontiers in Neuroscience, 2016, 10, 46.	1.4	3
244	Endothelial Tip Cell Finds Its Way with Piezo1. Neuron, 2020, 108, 5-7.	3.8	3
245	Microhemorrhages: Undetectable but clinically meaningful the question persists. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 231-232.	2.3	2
246	A gliovascular idea for the white matter repair?. Journal of Neurochemistry, 2013, 125, 172-174.	2.1	2
247	Current treatments and therapeutic targets in Alzheimer's disease. Advanced Drug Delivery Reviews, 2002, 54, 1533-7.	6.6	2
248	Neuroprotective effects of nicardipine in a rat model of ischemia and reperfusion. Neurosurgical Focus, 1997, 2, E4.	1.0	1
249	S1-01-02: Blood-brain barrier mechanisms of neurodegeneration in Alzheimer's disease. , 2015, 11, P114-P114.		1
250	3K3A-Activated Protein C Variant Does Not Interfere With the Plasma Clot Lysis Activity of Tenecteplase. Stroke, 2020, 51, 2236-2239.	1.0	1
251	Acetylated tau: A missing link between head injury and dementia. Med, 2021, 2, 637-639.	2.2	1
252	Reply to: Rethink the classical view of cerebrospinal fluid production. Nature Reviews Neurology, 2021, 17, 590-591.	4.9	1

#	Article	IF	CITATIONS
253	Novel R41Q- and R46Q-PAR1-Modified Mice Enable Proof-of-Concept Studies for In Vivo Protective Mechanisms of Action for Activated Protein C (APC) in Sepsis and Stroke. Blood, 2016, 128, 13-13.	0.6	1
254	Building vascular roadmaps: A novel toolset for visualizing and annotating whole mouse brain vasculature. Lab Animal, 2020, 49, 175-176.	0.2	1
255	Can prehospital "plasma supplement―neutralize the systemic storm in severe trauma?. Cell Reports Medicine, 2021, 2, 100481.	3.3	1
256	Survival and Toxicity of an Allogeneic Cytokine-secreting Fibroblast Vaccine in the Central Nervous System. Neurosurgery, 1998, 42, 340-340.	0.6	0
257	Advances in restorative neurosurgery: Endovascular delivery and fate determination of transplanted stem cells. Seminars in Anesthesia, 2004, 23, 248-257.	0.3	O
258	P2-120: INCREASED CSF MATRIX METALLOPROTEINASE-9 (MMP-9) AND REDUCED WHITE MATTER INTEGRITY IN HEALTHY ELDERLY. , 2014, 10, P515-P515.		0
259	FTS3â€02â€03: Interactions of Vascular and Alzheimer Disease. Alzheimer's and Dementia, 2016, 12, P278.	0.4	0
260	2313 Characterization of the host pericyte role in glioblastoma angiogenesis. Journal of Clinical and Translational Science, 2018, 2, 1-1.	0.3	0
261	F1â€03â€04: ALZHEIMER'S DISEASE: A MATTER OF BLOODâ€BRAIN BARRIER DYSFUNCTION?. Alzheimer's and Dementia, 2018, 14, P205.	0.4	O
262	O3â€01â€01: INTERACTION BETWEEN OBESITY, BRAIN HDL, AND APOE4 GENOTYPE IN CEREBRAL AMYLOIDOSIS Alzheimer's and Dementia, 2019, 15, P875.	5. 0.4	0
263	P4â€527: PERICYTE CONTRACTILITY BY OPTOGENETICS REGULATES CAPILLARY DIAMETER AND BLOOD FLOW. Alzheimer's and Dementia, 2019, 15, P1516.	0.4	O
264	Microglial activation: A process potentially related to Alzheimer's disease and lateâ€ife major depression. Alzheimer's and Dementia, 2020, 16, e041950.	0.4	0
265	Relationships between cerebrovascular health and tau PET uptake are associated with global cognition. Alzheimer's and Dementia, 2020, 16, e045326.	0.4	0
266	On the intersection between systemic infection, brain vascular dysfunction and dementia. Brain, 2021, 144, 1629-1631.	3.7	0
267	Editorial for " <scp>MRIâ€Based</scp> Investigation of Association Between Cerebrovascular Structural Alteration and White Matter Hyperintensity Induced by High Blood Pressure― Journal of Magnetic Resonance Imaging, 2021, 54, 1527-1528.	1.9	0
268	Altered Permeability Of The Blood-CSF Barrier In Chronic Migraine. FASEB Journal, 2018, 32, 922.6-922.6.	0.2	0
269	The relationship between bloodâ€brain barrier permeability and cerebral blood flow in cognitive impairment. Alzheimer's and Dementia, 2021, 17, .	0.4	0
270	Urine dicarboxylic acids are metabolic biomarkers of early Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.4	0

#	Article	IF	CITATIONS
271	Retinal nerve fiber layer thickness predicts CSF amyloid/tau before cognitive decline. , 2020, 15, e0232785.		O
272	Retinal nerve fiber layer thickness predicts CSF amyloid/tau before cognitive decline. , 2020, 15, e0232785.		0
273	Retinal nerve fiber layer thickness predicts CSF amyloid/tau before cognitive decline. , 2020, 15, e0232785.		O
274	Retinal nerve fiber layer thickness predicts CSF amyloid/tau before cognitive decline., 2020, 15, e0232785.		0