Kay Chen Tan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5651195/kay-chen-tan-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

216 5,181 66 33 h-index g-index citations papers 6.57 6.5 7,001 250 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
216	Evolutionary Architectural Search for Generative Adversarial Networks. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2022 , 1-12	4.1	3
215	Contrastive Learning Assisted-Alignment for Partial Domain Adaptation <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2022 , PP,	10.3	2
214	Evolutionary Large-Scale Multi-Objective Optimization: A Survey. <i>ACM Computing Surveys</i> , 2022 , 54, 1-3	3413.4	12
213	A Fast Dynamic Evolutionary Multiobjective Algorithm via Manifold Transfer Learning. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3417-3428	10.2	15
212	A Comprehensive Competitive Swarm Optimizer for Large-Scale Multiobjective Optimization. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2021 , 1-14	7-3	2
211	Optimizing Niche Center for Multimodal Optimization Problems <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	1
210	Graph-Based Class-Imbalance Learning With Label Enhancement <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	3
209	A Multi-Variation Multifactorial Evolutionary Algorithm for Large-Scale Multi-Objective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 1-1	15.6	2
208	A Bi-Objective Constrained Robust Gate Assignment Problem: Formulation, Instances and Algorithm. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 4488-4500	10.2	4
207	Identifying Autism Spectrum Disorder From Resting-State fMRI Using Deep Belief Network. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 2847-2861	10.3	16
206	Individual-Based Transfer Learning for Dynamic Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 4968-4981	10.2	14
205	Identification of Autistic Risk Candidate Genes and Toxic Chemicals via Multilabel Learning. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 3971-3984	10.3	3
204	A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization. <i>Memetic Computing</i> , 2021 , 13, 413-432	3.4	1
203	A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 405-418	15.6	14
202	. IEEE Transactions on Evolutionary Computation, 2021 , 25, 492-507	15.6	1
201	Paired Offspring Generation for Constrained Large-Scale Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 448-462	15.6	7
200	Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs). <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3129-3142	10.2	32

(2021-2021)

199	Solving Large-Scale Multiobjective Optimization Problems With Sparse Optimal Solutions via Unsupervised Neural Networks. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3115-3128	10.2	33
198	Evolving Deep Neural Networks via Cooperative Coevolution With Backpropagation. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 420-434	10.3	6
197	Explicit Evolutionary Multitasking for Combinatorial Optimization: A Case Study on Capacitated Vehicle Routing Problem. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3143-3156	10.2	32
196	Robust Environmental Sound Recognition With Sparse Key-Point Encoding and Efficient Multispike Learning. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 625-638	10.3	7
195	An Effective Knowledge Transfer Approach for Multiobjective Multitasking Optimization. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3238-3248	10.2	21
194	Toward Adaptive Knowledge Transfer in Multifactorial Evolutionary Computation. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 2563-2576	10.2	33
193	Numerical Spiking Neural P Systems. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 2443-2457	10.3	17
192	Hyperspectral Endmember Extraction by ([]- []] Multiobjective Differential Evolution Algorithm Based on Ranking Multiple Mutations. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2021 , 59, 2352-2364	8.1	4
191	People-Centric Evolutionary System for Dynamic Production Scheduling. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 1403-1416	10.2	11
190	Solving Generalized Vehicle Routing Problem With Occasional Drivers via Evolutionary Multitasking. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3171-3184	10.2	21
189	Manifold Learning-Inspired Mating Restriction for Evolutionary Multiobjective Optimization With Complicated Pareto Sets. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3325-3337	10.2	14
188	A Multifactorial Optimization Framework Based on Adaptive Intertask Coordinate System. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	2
187	Constructing Accurate and Efficient Deep Spiking Neural Networks With Double-Threshold and Augmented Schemes. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	5
186	A Variable Importance-Based Differential Evolution for Large-Scale Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	2
185	Manifold Interpolation for Large-Scale Multiobjective Optimization via Generative Adversarial Networks. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	2
184	Transfer Learning Based Parallel Evolutionary Algorithm Framework for Bi-Level Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 1-1	15.6	1
183	Progressive Tandem Learning for Pattern Recognition with Deep Spiking Neural Networks. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2021 , PP,	13.3	4
182	Temporal Encoding and Multispike Learning Framework for Efficient Recognition of Visual Patterns. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	2

181	Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	15
180	An Automatic Sound Classification Framework with Non-volatile Memory 2021 , 415-438		
179	Towards Large-Scale Evolutionary Multi-Tasking: A GPU-Based Paradigm. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 1-1	15.6	0
178	A Multiobjective Framework for Many-Objective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	6
177	Weighted Gate Layer Autoencoders. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	2
176	IEEE CIS VP-Publications Vision Statement [Society Briefs]. <i>IEEE Computational Intelligence Magazine</i> , 2021 , 16, 5-6	5.6	
175	Surrogate-Assisted Evolutionary Multitask Genetic Programming for Dynamic Flexible Job Shop Scheduling. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 651-665	15.6	26
174	A Survey on Evolutionary Construction of Deep Neural Networks. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 894-912	15.6	8
173	HuRAI: A brain-inspired computational model for human-robot auditory interface. <i>Neurocomputing</i> , 2021 , 465, 103-113	5.4	O
172	Concept Drift-Tolerant Transfer Learning in Dynamic Environments. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	3
171	A Survey on Evolutionary Neural Architecture Search. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	31
170	Multitask Genetic Programming-Based Generative Hyperheuristics: A Case Study in Dynamic Scheduling. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	12
169	A Gradient-Guided Evolutionary Approach to Training Deep Neural Networks. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	7
168	Deep Spiking Neural Networks for Large Vocabulary Automatic Speech Recognition. <i>Frontiers in Neuroscience</i> , 2020 , 14, 199	5.1	21
167	Competitive Swarm Optimizer with Mutated Agents for Finding Optimal Designs for Nonlinear Regression Models with Multiple Interacting Factors. <i>Memetic Computing</i> , 2020 , 12, 219-233	3.4	6
166	Toward Efficient Processing and Learning With Spikes: New Approaches for Multispike Learning. <i>IEEE Transactions on Cybernetics</i> , 2020 ,	10.2	4
165	Multi-label Feature Selection via Global Relevance and Redundancy Optimization 2020,		13
164	Solving Dynamic Multiobjective Problem via Autoencoding Evolutionary Search. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	7

163	. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020 , 1-17	7.3	5
162	A Fuzzy Decomposition-Based Multi/Many-Objective Evolutionary Algorithm. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	3
161	Multi-Task Learning for Efficient Diagnosis of ASD and ADHD using Resting-State fMRI Data 2020,		1
160	Towards Faster Vehicle Routing by Transferring Knowledge From Customer Representation. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 1-14	6.1	4
159	Improving Deep Learning based Optical Character Recognition via Neural Architecture Search 2020,		3
158	Learning From Weakly Labeled Data Based on Manifold Regularized Sparse Model. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	2
157	Large-Scale optimization via Evolutionary Multitasking assisted Random Embedding 2020,		5
156	A Recommender System for Metaheuristic Algorithms for Continuous Optimization Based on Deep Recurrent Neural Networks. <i>IEEE Transactions on Artificial Intelligence</i> , 2020 , 1, 5-18	4.7	12
155	Fast hypervolume approximation scheme based on a segmentation strategy. <i>Information Sciences</i> , 2020 , 509, 320-342	7.7	8
154	Bipartite Differential Neural Network for Unsupervised Image Change Detection. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2020 , 31, 876-890	10.3	19
153	A Subregion Division-Based Evolutionary Algorithm With Effective Mating Selection for Many-Objective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 3477-3490	10.2	22
152	A Mixture-of-Experts Prediction Framework for Evolutionary Dynamic Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 5099-5112	10.2	18
151	A Unified Entropy-Based Distance Metric for Ordinal-and-Nominal-Attribute Data Clustering. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2020 , 31, 39-52	10.3	10
150	Objective-Domain Dual Decomposition: An Effective Approach to Optimizing Partially Differentiable Objective Functions. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 923-934	10.2	O
149	Affine Transformation-Enhanced Multifactorial Optimization for Heterogeneous Problems. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	33
148	Solving Dynamic Multi-objective Optimization Problems Using Incremental Support Vector Machine 2019 ,		1
147	Finding High-Dimensional D-Optimal Designs for Logistic Models via Differential Evolution. <i>IEEE Access</i> , 2019 , 7, 7133-7146	3.5	11
146	An Evolutionary Constraint-Handling Technique for Parametric Optimization of a Cancer Immunotherapy Model. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2019 , 3, 151-	· 1 62	5

145	Deep infrared pedestrian classification based on automatic image matting. <i>Applied Soft Computing Journal</i> , 2019 , 77, 484-496	7.5	8
144	Multiobjective Sparse Non-Negative Matrix Factorization. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 2941-2954	10.2	15
143	Genetic Programming for Job Shop Scheduling. Studies in Computational Intelligence, 2019, 143-167	0.8	6
142	A Cost-Sensitive Deep Belief Network for Imbalanced Classification. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2019 , 30, 109-122	10.3	87
141	Evolutionary Multitasking via Explicit Autoencoding. IEEE Transactions on Cybernetics, 2019, 49, 3457-34	170.2	98
140	Gate-Layer Autoencoders with Application to Incomplete EEG Signal Recovery 2019,		3
139	Evolutionary Dynamic Multi-objective Optimization via Regression Transfer Learning 2019,		1
138	Evolutionary Many-Objective Algorithm Using Decomposition-Based Dominance Relationship. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 4129-4139	10.2	19
137	Spike Timing or Rate? Neurons Learn to Make Decisions for Both Through Threshold-Driven Plasticity. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 2178-2189	10.2	21
136	QoS-Aware Web Service Selection with Internal Complementarity. <i>IEEE Transactions on Services Computing</i> , 2019 , 12, 276-289	4.8	5
135	Cognitive Navigation by Neuro-Inspired Localization, Mapping, and Episodic Memory. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2018 , 10, 751-761	3	24
134	Special Issue of BICS 2016. Cognitive Computation, 2018, 10, 282-283	4.4	
133	Sparse Temporal Encoding of Visual Features for Robust Object Recognition by Spiking Neurons. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 5823-5833	10.3	17
132	A New Differential Evolution Algorithm for Minimax Optimization in Robust Design. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 1355-1368	10.2	42
131	Adjust weight vectors in MOEA/D for bi-objective optimization problems with discontinuous Pareto fronts. <i>Soft Computing</i> , 2018 , 22, 3997-4012	3.5	18
130	A Generic Deep-Learning-Based Approach for Automated Surface Inspection. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 929-940	10.2	225
129	Spatio-Spectral Representation Learning for Electroencephalographic Gait-Pattern Classification. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2018 , 26, 1858-1867	4.8	26
128	Adaptive charting genetic programming for dynamic flexible job shop scheduling 2018 ,		3

127	Real-Time Path-Generation and Path-Following Using an Interoperable Multi-Agent Framework. <i>Unmanned Systems</i> , 2018 , 06, 231-250	3	1
126	A Spiking Neural Network Framework for Robust Sound Classification. <i>Frontiers in Neuroscience</i> , 2018 , 12, 836	5.1	32
125	Corrections to Cognitive Navigation by Neuro-Inspired Localization, Mapping, and Episodic Memory[[Sep 18 751-761]. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2018 , 10, 1165-1	1 <i>6</i> 5	
124	Visualizing the Evolution of Computer Programs for Genetic Programming [Research Frontier]. <i>IEEE Computational Intelligence Magazine</i> , 2018 , 13, 77-94	5.6	11
123	A Novel Time Series-Histogram of Features (TS-HoF) Method for Prognostic Applications. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2018 , 2, 204-213	4.1	9
122	Solving dynamic multi-objective optimization problems via support vector machine 2018,		6
121	Multimodal Degradation Prognostics Based on Switching Kalman Filter Ensemble. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2017 , 28, 136-148	10.3	39
120	Surrogate-Assisted Genetic Programming With Simplified Models for Automated Design of Dispatching Rules. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 2951-2965	10.2	60
119	Multiobjective Multifactorial Optimization in Evolutionary Multitasking. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 1652-1665	10.2	155
118	Multiple Exponential Recombination for Differential Evolution. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 995-1006	10.2	52
117	A Hierarchically Organized Memory Model with Temporal Population Coding. <i>Intelligent Systems Reference Library</i> , 2017 , 131-152	0.8	
116	Rapid Feedforward Computation by Temporal Encoding and Learning with Spiking Neurons. <i>Intelligent Systems Reference Library</i> , 2017 , 19-41	0.8	1
115	Precise-Spike-Driven Synaptic Plasticity for Hetero Association of Spatiotemporal Spike Patterns. <i>Intelligent Systems Reference Library</i> , 2017 , 65-87	0.8	
114	Temporal Learning in Multilayer Spiking Neural Networks Through Construction of Causal Connections. <i>Intelligent Systems Reference Library</i> , 2017 , 115-129	0.8	2
113	Spiking Neuron Based Cognitive Memory Model. Intelligent Systems Reference Library, 2017, 153-172	0.8	
112	Feed Optimization for Fluidized Catalytic Cracking using a Multi-Objective Evolutionary Algorithm. <i>Advances in Process Systems Engineering</i> , 2017 , 291-313		
111	Automatic Microstructure Defect Detection of Ti-6Al-4V Titanium Alloy by Regions-Based Graph. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2017 , 1, 87-96	4.1	5
110	An Intelligent Packing Programming for Space Station Extravehicular Missions. <i>IEEE Computational Intelligence Magazine</i> , 2017 , 12, 38-47	5.6	3

109	On the analysis and evaluation of prosody conversion techniques 2017,		4
108	A Benchmark Test Suite for Dynamic Evolutionary Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 461-472	10.2	32
107	Automatic EEG Artifact Removal Techniques by Detecting Influential Independent Components. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2017 , 1, 270-279	4.1	23
106	A Spiking Neural Network Model for Sound Recognition. <i>Communications in Computer and Information Science</i> , 2017 , 584-594	0.3	6
105	Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2017 , 28, 2306-2318	10.3	310
104	Evolutionary Cluster-Based Synthetic Oversampling Ensemble (ECO-Ensemble) for Imbalance Learning. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 2850-2861	10.2	78
103	Solving Multiobjective Optimization Problems in Unknown Dynamic Environments: An Inverse Modeling Approach. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 4223-4234	10.2	33
102	Two-stage assortative mating for multi-objective multifactorial evolutionary optimization 2017,		16
101	CIS Publication Spotlight [Publication Spotlight]. <i>IEEE Computational Intelligence Magazine</i> , 2017 , 12, 6-9	5.6	
100	A data-driven prognostics framework for tool remaining useful life estimation in tool condition monitoring 2017 ,		10
99	Transformation of prosody in voice conversion 2017,		8
98	Sparse representation of phonetic features for voice conversion with and without parallel data 2017 ,		11
97	Decomposition based dominance relationship for evolutionary many-objective algorithm 2017,		3
96	A Spiking Neural Network System for Robust Sequence Recognition. <i>Intelligent Systems Reference Library</i> , 2017 , 89-113	0.8	1
95	A Spike-Timing Based Integrated Model for Pattern Recognition. <i>Intelligent Systems Reference Library</i> , 2017 , 43-63	0.8	
94	Decomposition-based multi-objective evolutionary algorithm for vehicle routing problem with stochastic demands. <i>Soft Computing</i> , 2016 , 20, 3443-3453	3.5	22
93	A Spiking Neural Network System for Robust Sequence Recognition. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2016 , 27, 621-35	10.3	57
92	Decompositional independent component analysis using multi-objective optimization. <i>Soft Computing</i> , 2016 , 20, 1289-1304	3.5	15

91	A time window neural network based framework for Remaining Useful Life estimation 2016,		23
90	Training cost-sensitive Deep Belief Networks on imbalance data problems 2016,		27
89	Solving the IEEE CEC 2015 Dynamic Benchmark Problems Using Kalman Filter Based Dynamic Multiobjective Evolutionary Algorithm. <i>Proceedings in Adaptation, Learning and Optimization</i> , 2016 , 239-	-252	7
88	Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 2862-2873	10.2	107
87	Computational Intelligence for Brain Computer Interface [Guest Editorial]. <i>IEEE Computational Intelligence Magazine</i> , 2016 , 11, 18-18	5.6	1
86	Adaptive Cross-Generation Differential Evolution Operators for Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2016 , 20, 232-244	15.6	71
85	Multiway analysis of EEG artifacts based on Block Term Decomposition 2016,		6
84	A novel grid-based differential evolution (DE) algorithm for many-objective optimization 2016,		4
83	Interoperable multi-agent framework for unmanned aerial/ground vehicles: towards robot autonomy. <i>Complex & Intelligent Systems</i> , 2016 , 2, 45-59	7.1	18
82	Adaptive memetic computing for evolutionary multiobjective optimization. <i>IEEE Transactions on Cybernetics</i> , 2015 , 45, 610-21	10.2	50
81	A Dispatching rule based Genetic Algorithm for Order Acceptance and Scheduling 2015,		6
80	A New Framework for Self-adapting Control Parameters in Multi-objective Optimization 2015,		1
79	A Novel Multi-objective Optimization Framework Combining NSGA-II and MOEA/D. <i>Proceedings in Adaptation, Learning and Optimization</i> , 2015 , 227-237	0.2	
78	Automatic programming via iterated local search for dynamic job shop scheduling. <i>IEEE Transactions on Cybernetics</i> , 2015 , 45, 1-14	10.2	94
77	A Spiking Neural Network Model for Associative Memory Using Temporal Codes. <i>Proceedings in Adaptation, Learning and Optimization</i> , 2015 , 561-572	0.2	2
76	A hybrid evolutionary multiobjective optimization algorithm with adaptive multi-fitness assignment. <i>Soft Computing</i> , 2015 , 19, 3249-3259	3.5	11
75	CIS Publication Spotlight [Publication Spotlight]. <i>IEEE Computational Intelligence Magazine</i> , 2015 , 10, 5-7	5.6	
74	Evolutionary big optimization (BigOpt) of signals 2015 ,		30

73	Deep Belief Networks Ensemble with Multi-objective Optimization for Failure Diagnosis 2015,		27
72	Enhancing genetic programming based hyper-heuristics for dynamic multi-objective job shop scheduling problems 2015 ,		12
71	. IEEE Transactions on Evolutionary Computation, 2015 , 19, 542-559	15.6	62
70	An Opposition-based Self-adaptive Hybridized Differential Evolution Algorithm for Multi-objective Optimization (OSADE). <i>Proceedings in Adaptation, Learning and Optimization</i> , 2015 , 447-461	0.2	6
69	Application of Precise-Spike-Driven Rule in Spiking Neural Networks for Optical Character Recognition. <i>Proceedings in Adaptation, Learning and Optimization</i> , 2015 , 65-75	0.2	O
68	Automatic Design of Scheduling Policies for Dynamic Multi-objective Job Shop Scheduling via Cooperative Coevolution Genetic Programming. <i>IEEE Transactions on Evolutionary Computation</i> , 2014 , 18, 193-208	15.6	153
67	A brain-inspired spiking neural network model with temporal encoding and learning. <i>Neurocomputing</i> , 2014 , 138, 3-13	5.4	72
66	Genetic programming for evolving due-date assignment models in job shop environments. <i>Evolutionary Computation</i> , 2014 , 22, 105-38	4.3	28
65	Solving Vehicle Routing Problem with Stochastic Demand Using Multi-objective Evolutionary Algorithm 2014 ,		1
64	Learning believable game agents using sensor noise and action histogram. <i>Memetic Computing</i> , 2014 , 6, 215-232	3.4	1
63	Selection Schemes in Surrogate-Assisted Genetic Programming for Job Shop Scheduling. <i>Lecture Notes in Computer Science</i> , 2014 , 656-667	0.9	12
62	A novel Differential Evolution (DE) algorithm for multi-objective optimization 2014,		2
61	Diversity preservation with hybrid recombination for evolutionary multiobjective optimization 2014 ,		1
60	Artifact Removal from EEG Using a Multi-objective Independent Component Analysis Model. <i>Lecture Notes in Computer Science</i> , 2014 , 570-577	0.9	15
59	A Novel Hybrid Multi-objective Optimization Framework: Rotating the Objective Space. <i>Lecture Notes in Computer Science</i> , 2014 , 192-203	0.9	
58	Learning iterative dispatching rules for job shop scheduling with genetic programming. <i>International Journal of Advanced Manufacturing Technology</i> , 2013 , 67, 85-100	3.2	43
57	Enhancing the scalability of multi-objective optimization via restricted Boltzmann machine-based estimation of distribution algorithm. <i>Information Sciences</i> , 2013 , 248, 191-213	7.7	16
56	Dynamic Multiobjective Optimization Using Evolutionary Algorithm with Kalman Filter. <i>Procedia Computer Science</i> , 2013 , 24, 66-75	1.6	31

(2011-2013)

55	Hybrid evolutionary computation methods for quay crane scheduling problems. <i>Computers and Operations Research</i> , 2013 , 40, 2083-2093	4.6	30
54	. IEEE Transactions on Evolutionary Computation, 2013 , 17, 666-685	15.6	136
53	A Computational Study of Representations in Genetic Programming to Evolve Dispatching Rules for the Job Shop Scheduling Problem. <i>IEEE Transactions on Evolutionary Computation</i> , 2013 , 17, 621-639	15.6	134
52	Rapid feedforward computation by temporal encoding and learning with spiking neurons. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2013 , 24, 1539-52	10.3	89
51	A hierarchical organized memory model using spiking neurons 2013,		1
50	A hippocampus CA3 spiking neural network model for storage and retrieval of sequential memory 2013 ,		1
49	An Energy-Based Sampling Technique for Multi-Objective Restricted Boltzmann Machine. <i>IEEE Transactions on Evolutionary Computation</i> , 2013 , 17, 767-785	15.6	7
48	Multi-objective optimization with estimation of distribution algorithm in a noisy environment. <i>Evolutionary Computation</i> , 2013 , 21, 149-77	4.3	31
47	Evolutionary Complex Engineering Optimization [Editor's Remarks]. <i>IEEE Computational Intelligence Magazine</i> , 2013 , 8, 2-6	5.6	
46	Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns. <i>PLoS ONE</i> , 2013 , 8, e78318	3.7	98
45	Dynamic Multi-objective Job Shop Scheduling: A Genetic Programming Approach. <i>Studies in Computational Intelligence</i> , 2013 , 251-282	0.8	32
44	A Novel Diversity Maintenance Scheme for Evolutionary Multi-objective Optimization. <i>Lecture Notes in Computer Science</i> , 2013 , 270-277	0.9	5
43	Machine Learning Enhanced Multi-Objective Evolutionary Algorithm Based on Decomposition. Lecture Notes in Computer Science, 2013 , 553-560	0.9	5
42	Type-2 Fuzzy Logic - Plodding on Steadily and Staying Relevant [Editor's Remarks]. <i>IEEE Computational Intelligence Magazine</i> , 2012 , 7, 2-8	5.6	
41	A coevolution genetic programming method to evolve scheduling policies for dynamic multi-objective job shop scheduling problems 2012 ,		11
40	Propelling Bioinformatics a Notch Higher [Editor's Remarks]. <i>IEEE Computational Intelligence Magazine</i> , 2012 , 7, 2-12	5.6	
39	Evolving Reusable Operation-Based Due-Date Assignment Models for Job Shop Scheduling with Genetic Programming. <i>Lecture Notes in Computer Science</i> , 2012 , 121-133	0.9	10
38	Nothing's Too Small to Have an Impact [Editor's Remarks]. <i>IEEE Computational Intelligence Magazine</i> , 2011 , 6, 2-2	5.6	_

37 'Tis the Season to be Healthy! [Editor's Remarks]. *IEEE Computational Intelligence Magazine*, **2011**, 6, 2-105.6

	Dynamic Game Difficulty Scaling Using Adaptive Behavior-Based Al. <i>IEEE Transactions on Games</i> ,		
36	2011 , 3, 289-301		32
35	A Multi-Facet Survey on Memetic Computation. <i>IEEE Transactions on Evolutionary Computation</i> , 2011 , 15, 591-607	15.6	408
34	Evolutionary algorithms for solving multi-objective travelling salesman problem. <i>Flexible Services and Manufacturing Journal</i> , 2011 , 23, 207-241	1.8	19
33	Restricted Boltzmann machine based algorithm for multi-objective optimization 2010,		22
32	An investigation on sampling technique for multi-objective restricted Boltzmann machine 2010,		2
31	Preface for the special volume on Computational Intelligence in Scheduling. <i>Annals of Operations Research</i> , 2010 , 180, 1-2	3.2	1
30	A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment. <i>Memetic Computing</i> , 2010 , 2, 87-110	3.4	93
29	Probabilistic Based Evolutionary Optimizers in Bi-objective Travelling Salesman Problem. <i>Lecture Notes in Computer Science</i> , 2010 , 588-592	0.9	4
28	Public Goods Provision: An Evolutionary Game Theoretic Study Under Asymmetric Information. <i>IEEE Transactions on Games</i> , 2009 , 1, 105-120		2
27	. IEEE Transactions on Evolutionary Computation, 2009, 13, 303-320	15.6	14
26	A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2009 , 13, 103-127	15.6	329
25	Evolutionary Game Theoretic Approach for Modeling Civil Violence. <i>IEEE Transactions on Evolutionary Computation</i> , 2009 , 13, 780-800	15.6	35
24	Nontrivial global attractors in 2-D multistable attractor neural networks. <i>IEEE Transactions on Neural Networks</i> , 2009 , 20, 1842-51		9
23	Analysis of continuous attractors for 2-D linear threshold neural networks. <i>IEEE Transactions on Neural Networks</i> , 2009 , 20, 175-80		10
22	Dynamic Evolutionary Multi-objective Optimization. Studies in Computational Intelligence, 2009, 125-157	2 0.8	4
21	Interference-less neural network training. <i>Neurocomputing</i> , 2008 , 71, 3509-3524	5.4	13
20	A memetic evolutionary search algorithm with variable length chromosome for rule extraction. Conference Proceedings IEEE International Conference on Systems, Man, and Cybernetics, 2008,	2	1

19	Handling Uncertainties in Evolutionary Multi-Objective Optimization 2008, 262-292		11
18	Hybrid multiobjective evolutionary design for artificial neural networks. <i>IEEE Transactions on Neural Networks</i> , 2008 , 19, 1531-48		65
17	A Multi-Objective Multi-Colony Ant Algorithm for Solving the Berth Allocation Problem. <i>Studies in Computational Intelligence</i> , 2008 , 333-350	0.8	7
16	Feed Optimization for Fluidized Catalytic Cracking using a Multi-Objective Evolutionary Algorithm. <i>Advances in Process Systems Engineering</i> , 2008 , 277-299		
15	Designing a Recurrent Neural Network-based Controller for Gyro-Mirror Line-of-Sight Stabilization System using an Artificial Immune Algorithm. <i>Studies in Computational Intelligence</i> , 2007 , 189-209	0.8	1
14	Reliability evaluation of power-generating systems including time-dependent sources based on binary particle swarm optimization 2007 ,		5
13	Molecular Dynamics Optimizer 2007 , 302-316		1
12	A Multi-Objective Evolutionary Algorithm for Channel Routing Problems. <i>Studies in Computational Intelligence</i> , 2007 , 405-436	0.8	
11	Evolving the Tradeoffs between Pareto-Optimality and Robustness in Multi-Objective Evolutionary Algorithms. <i>Studies in Computational Intelligence</i> , 2007 , 457-478	0.8	11
10	Multiobjective Evolutionary Neural Networks for Time Series Forecasting 2007 , 346-360		5
10	Multiobjective Evolutionary Neural Networks for Time Series Forecasting 2007 , 346-360 Adequacy of Empirical Performance Assessment for Multiobjective Evolutionary Optimizer 2007 , 893-9	007	5
		1.5	
	Adequacy of Empirical Performance Assessment for Multiobjective Evolutionary Optimizer 2007 , 893-9		2
9	Adequacy of Empirical Performance Assessment for Multiobjective Evolutionary Optimizer 2007 , 893-9 Using the OPC standard for real-time process monitoring and control. <i>IEEE Software</i> , 2005 , 22, 54-59 CAutoCSD-evolutionary search and optimisation enabled computer automated control system	1.5	2
9 8 7	Adequacy of Empirical Performance Assessment for Multiobjective Evolutionary Optimizer 2007, 893-9 Using the OPC standard for real-time process monitoring and control. <i>IEEE Software</i> , 2005, 22, 54-59 CAutoCSD-evolutionary search and optimisation enabled computer automated control system design. <i>International Journal of Automation and Computing</i> , 2004, 1, 76-88 Fault-tolerant vibration control in a networked and embedded rocket fairing system. <i>IEEE</i>	1.5 3.5	2 18 27
9 8 7 6	Adequacy of Empirical Performance Assessment for Multiobjective Evolutionary Optimizer 2007, 893-9 Using the OPC standard for real-time process monitoring and control. <i>IEEE Software</i> , 2005, 22, 54-59 CAutoCSD-evolutionary search and optimisation enabled computer automated control system design. <i>International Journal of Automation and Computing</i> , 2004, 1, 76-88 Fault-tolerant vibration control in a networked and embedded rocket fairing system. <i>IEEE Transactions on Industrial Electronics</i> , 2004, 51, 1127-1141 Vehicle capacity planning system: a case study on vehicle routing problem with time windows. <i>IEEE</i>	1.5 3.5	2 18 27 18
98765	Adequacy of Empirical Performance Assessment for Multiobjective Evolutionary Optimizer 2007, 893-9 Using the OPC standard for real-time process monitoring and control. <i>IEEE Software</i> , 2005, 22, 54-59 CAutoCSD-evolutionary search and optimisation enabled computer automated control system design. <i>International Journal of Automation and Computing</i> , 2004, 1, 76-88 Fault-tolerant vibration control in a networked and embedded rocket fairing system. <i>IEEE Transactions on Industrial Electronics</i> , 2004, 51, 1127-1141 Vehicle capacity planning system: a case study on vehicle routing problem with time windows. <i>IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans</i> , 2003, 33, 169-178	1.5 3.5	2 18 27 18

A survey on evolutionary computation for complex continuous optimization. *Artificial Intelligence Review*,1

9.7 34