Kay Chen Tan

List of Publications by Citations

Source: https://exaly.com/author-pdf/5651195/kay-chen-tan-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

66

L-index

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

216 5,181 33 h-index g-index citations papers 6.57

6.5 7,001 250 avg, IF ext. citations ext. papers

#	Paper	IF	Citations
216	A Multi-Facet Survey on Memetic Computation. <i>IEEE Transactions on Evolutionary Computation</i> , 2011 , 15, 591-607	15.6	408
215	A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2009 , 13, 103-127	15.6	329
214	Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2017 , 28, 2306-2318	10.3	310
213	A Generic Deep-Learning-Based Approach for Automated Surface Inspection. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 929-940	10.2	225
212	Multiobjective Multifactorial Optimization in Evolutionary Multitasking. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 1652-1665	10.2	155
211	Automatic Design of Scheduling Policies for Dynamic Multi-objective Job Shop Scheduling via Cooperative Coevolution Genetic Programming. <i>IEEE Transactions on Evolutionary Computation</i> , 2014 , 18, 193-208	15.6	153
210	. IEEE Transactions on Evolutionary Computation, 2013 , 17, 666-685	15.6	136
209	A Computational Study of Representations in Genetic Programming to Evolve Dispatching Rules for the Job Shop Scheduling Problem. <i>IEEE Transactions on Evolutionary Computation</i> , 2013 , 17, 621-639	15.6	134
208	Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 2862-2873	10.2	107
207	Evolutionary artificial potential fields and their application in real time robot path planning		99
206	Evolutionary Multitasking via Explicit Autoencoding. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 3457-3	470.2	98
205	Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns. <i>PLoS ONE</i> , 2013 , 8, e78318	3.7	98
204	Automatic programming via iterated local search for dynamic job shop scheduling. <i>IEEE Transactions on Cybernetics</i> , 2015 , 45, 1-14	10.2	94
203	A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment. <i>Memetic Computing</i> , 2010 , 2, 87-110	3.4	93
202	Rapid feedforward computation by temporal encoding and learning with spiking neurons. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2013 , 24, 1539-52	10.3	89
201	A Cost-Sensitive Deep Belief Network for Imbalanced Classification. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2019 , 30, 109-122	10.3	87
200	Evolutionary Cluster-Based Synthetic Oversampling Ensemble (ECO-Ensemble) for Imbalance Learning. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 2850-2861	10.2	78

(2020-2014)

199	A brain-inspired spiking neural network model with temporal encoding and learning. <i>Neurocomputing</i> , 2014 , 138, 3-13	5.4	72	
198	Adaptive Cross-Generation Differential Evolution Operators for Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2016 , 20, 232-244	15.6	71	
197	Hybrid multiobjective evolutionary design for artificial neural networks. <i>IEEE Transactions on Neural Networks</i> , 2008 , 19, 1531-48		65	
196	. IEEE Transactions on Evolutionary Computation, 2015 , 19, 542-559	15.6	62	
195	Surrogate-Assisted Genetic Programming With Simplified Models for Automated Design of Dispatching Rules. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 2951-2965	10.2	60	
194	A Spiking Neural Network System for Robust Sequence Recognition. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2016 , 27, 621-35	10.3	57	
193	Multiple Exponential Recombination for Differential Evolution. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 995-1006	10.2	52	
192	Adaptive memetic computing for evolutionary multiobjective optimization. <i>IEEE Transactions on Cybernetics</i> , 2015 , 45, 610-21	10.2	50	
191	Learning iterative dispatching rules for job shop scheduling with genetic programming. <i>International Journal of Advanced Manufacturing Technology</i> , 2013 , 67, 85-100	3.2	43	
190	A New Differential Evolution Algorithm for Minimax Optimization in Robust Design. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 1355-1368	10.2	42	
189	Multimodal Degradation Prognostics Based on Switching Kalman Filter Ensemble. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2017 , 28, 136-148	10.3	39	
188	Vehicle capacity planning system: a case study on vehicle routing problem with time windows. <i>IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans</i> , 2003 , 33, 169-178		37	
187	Evolutionary Game Theoretic Approach for Modeling Civil Violence. <i>IEEE Transactions on Evolutionary Computation</i> , 2009 , 13, 780-800	15.6	35	
186	A survey on evolutionary computation for complex continuous optimization. <i>Artificial Intelligence Review</i> ,1	9.7	34	
185	Solving Multiobjective Optimization Problems in Unknown Dynamic Environments: An Inverse Modeling Approach. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 4223-4234	10.2	33	
184	Solving Large-Scale Multiobjective Optimization Problems With Sparse Optimal Solutions via Unsupervised Neural Networks. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3115-3128	10.2	33	
183	Toward Adaptive Knowledge Transfer in Multifactorial Evolutionary Computation. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 2563-2576	10.2	33	
182	Affine Transformation-Enhanced Multifactorial Optimization for Heterogeneous Problems. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	33	

181	A Benchmark Test Suite for Dynamic Evolutionary Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 461-472	10.2	32
180	Dynamic Game Difficulty Scaling Using Adaptive Behavior-Based Al. <i>IEEE Transactions on Games</i> , 2011 , 3, 289-301		32
179	Dynamic Multi-objective Job Shop Scheduling: A Genetic Programming Approach. <i>Studies in Computational Intelligence</i> , 2013 , 251-282	0.8	32
178	Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs). <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3129-3142	10.2	32
177	Explicit Evolutionary Multitasking for Combinatorial Optimization: A Case Study on Capacitated Vehicle Routing Problem. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3143-3156	10.2	32
176	A Spiking Neural Network Framework for Robust Sound Classification. <i>Frontiers in Neuroscience</i> , 2018 , 12, 836	5.1	32
175	Dynamic Multiobjective Optimization Using Evolutionary Algorithm with Kalman Filter. <i>Procedia Computer Science</i> , 2013 , 24, 66-75	1.6	31
174	Multi-objective optimization with estimation of distribution algorithm in a noisy environment. <i>Evolutionary Computation</i> , 2013 , 21, 149-77	4.3	31
173	A Survey on Evolutionary Neural Architecture Search. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	31
172	Hybrid evolutionary computation methods for quay crane scheduling problems. <i>Computers and Operations Research</i> , 2013 , 40, 2083-2093	4.6	30
171	Evolutionary big optimization (BigOpt) of signals 2015,		30
170	Genetic programming for evolving due-date assignment models in job shop environments. <i>Evolutionary Computation</i> , 2014 , 22, 105-38	4.3	28
169	Training cost-sensitive Deep Belief Networks on imbalance data problems 2016,		27
168	Deep Belief Networks Ensemble with Multi-objective Optimization for Failure Diagnosis 2015,		27
167	CAutoCSD-evolutionary search and optimisation enabled computer automated control system design. <i>International Journal of Automation and Computing</i> , 2004 , 1, 76-88	3.5	27
166	Spatio-Spectral Representation Learning for Electroencephalographic Gait-Pattern Classification. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2018 , 26, 1858-1867	4.8	26
165	Surrogate-Assisted Evolutionary Multitask Genetic Programming for Dynamic Flexible Job Shop Scheduling. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 651-665	15.6	26
164	Cognitive Navigation by Neuro-Inspired Localization, Mapping, and Episodic Memory. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2018 , 10, 751-761	3	24

163	A time window neural network based framework for Remaining Useful Life estimation 2016,		23
162	Automatic EEG Artifact Removal Techniques by Detecting Influential Independent Components. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2017 , 1, 270-279	4.1	23
161	Decomposition-based multi-objective evolutionary algorithm for vehicle routing problem with stochastic demands. <i>Soft Computing</i> , 2016 , 20, 3443-3453	3.5	22
160	Restricted Boltzmann machine based algorithm for multi-objective optimization 2010,		22
159	A Subregion Division-Based Evolutionary Algorithm With Effective Mating Selection for Many-Objective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 3477-3490	10.2	22
158	Deep Spiking Neural Networks for Large Vocabulary Automatic Speech Recognition. <i>Frontiers in Neuroscience</i> , 2020 , 14, 199	5.1	21
157	Spike Timing or Rate? Neurons Learn to Make Decisions for Both Through Threshold-Driven Plasticity. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 2178-2189	10.2	21
156	An Effective Knowledge Transfer Approach for Multiobjective Multitasking Optimization. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3238-3248	10.2	21
155	Solving Generalized Vehicle Routing Problem With Occasional Drivers via Evolutionary Multitasking. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3171-3184	10.2	21
154	Evolutionary algorithms for solving multi-objective travelling salesman problem. <i>Flexible Services and Manufacturing Journal</i> , 2011 , 23, 207-241	1.8	19
153	Evolutionary Many-Objective Algorithm Using Decomposition-Based Dominance Relationship. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 4129-4139	10.2	19
152	Bipartite Differential Neural Network for Unsupervised Image Change Detection. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2020 , 31, 876-890	10.3	19
151	Adjust weight vectors in MOEA/D for bi-objective optimization problems with discontinuous Pareto fronts. <i>Soft Computing</i> , 2018 , 22, 3997-4012	3.5	18
150	Using the OPC standard for real-time process monitoring and control. <i>IEEE Software</i> , 2005 , 22, 54-59	1.5	18
149	Fault-tolerant vibration control in a networked and embedded rocket fairing system. <i>IEEE Transactions on Industrial Electronics</i> , 2004 , 51, 1127-1141	8.9	18
148	Interoperable multi-agent framework for unmanned aerial/ground vehicles: towards robot autonomy. <i>Complex & Intelligent Systems</i> , 2016 , 2, 45-59	7.1	18
147	A Mixture-of-Experts Prediction Framework for Evolutionary Dynamic Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 5099-5112	10.2	18
146	Sparse Temporal Encoding of Visual Features for Robust Object Recognition by Spiking Neurons. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 5823-5833	10.3	17

145	Numerical Spiking Neural P Systems. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 2443-2457	10.3	17
144	Enhancing the scalability of multi-objective optimization via restricted Boltzmann machine-based estimation of distribution algorithm. <i>Information Sciences</i> , 2013 , 248, 191-213	7.7	16
143	Two-stage assortative mating for multi-objective multifactorial evolutionary optimization 2017,		16
142	Identifying Autism Spectrum Disorder From Resting-State fMRI Using Deep Belief Network. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 2847-2861	10.3	16
141	Decompositional independent component analysis using multi-objective optimization. <i>Soft Computing</i> , 2016 , 20, 1289-1304	3.5	15
140	A Fast Dynamic Evolutionary Multiobjective Algorithm via Manifold Transfer Learning. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3417-3428	10.2	15
139	Multiobjective Sparse Non-Negative Matrix Factorization. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 2941-2954	10.2	15
138	Artifact Removal from EEG Using a Multi-objective Independent Component Analysis Model. <i>Lecture Notes in Computer Science</i> , 2014 , 570-577	0.9	15
137	Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	15
136	. IEEE Transactions on Evolutionary Computation, 2009 , 13, 303-320	15.6	14
135	Individual-Based Transfer Learning for Dynamic Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 4968-4981	10.2	14
134	A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 405-418	15.6	14
133	Manifold Learning-Inspired Mating Restriction for Evolutionary Multiobjective Optimization With Complicated Pareto Sets. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3325-3337	10.2	14
132	Interference-less neural network training. <i>Neurocomputing</i> , 2008 , 71, 3509-3524	5.4	13
131	Multi-label Feature Selection via Global Relevance and Redundancy Optimization 2020,		13
130	Enhancing genetic programming based hyper-heuristics for dynamic multi-objective job shop scheduling problems 2015 ,		12
129	Selection Schemes in Surrogate-Assisted Genetic Programming for Job Shop Scheduling. <i>Lecture Notes in Computer Science</i> , 2014 , 656-667	0.9	12
128	Evolutionary Large-Scale Multi-Objective Optimization: A Survey. <i>ACM Computing Surveys</i> , 2022 , 54, 1-34	13.4	12

(2017-2020)

127	A Recommender System for Metaheuristic Algorithms for Continuous Optimization Based on Deep Recurrent Neural Networks. <i>IEEE Transactions on Artificial Intelligence</i> , 2020 , 1, 5-18	4.7	12	
126	Multitask Genetic Programming-Based Generative Hyperheuristics: A Case Study in Dynamic Scheduling. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	12	
125	Finding High-Dimensional D-Optimal Designs for Logistic Models via Differential Evolution. <i>IEEE Access</i> , 2019 , 7, 7133-7146	3.5	11	
124	Sparse representation of phonetic features for voice conversion with and without parallel data 2017 ,		11	
123	A hybrid evolutionary multiobjective optimization algorithm with adaptive multi-fitness assignment. <i>Soft Computing</i> , 2015 , 19, 3249-3259	3.5	11	
122	A coevolution genetic programming method to evolve scheduling policies for dynamic multi-objective job shop scheduling problems 2012 ,		11	
121	Handling Uncertainties in Evolutionary Multi-Objective Optimization 2008, 262-292		11	
120	Evolving the Tradeoffs between Pareto-Optimality and Robustness in Multi-Objective Evolutionary Algorithms. <i>Studies in Computational Intelligence</i> , 2007 , 457-478	0.8	11	
119	People-Centric Evolutionary System for Dynamic Production Scheduling. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 1403-1416	10.2	11	
118	Visualizing the Evolution of Computer Programs for Genetic Programming [Research Frontier]. <i>IEEE Computational Intelligence Magazine</i> , 2018 , 13, 77-94	5.6	11	
117	A data-driven prognostics framework for tool remaining useful life estimation in tool condition monitoring 2017 ,		10	
116	Analysis of continuous attractors for 2-D linear threshold neural networks. <i>IEEE Transactions on Neural Networks</i> , 2009 , 20, 175-80		10	
115	Evolving Reusable Operation-Based Due-Date Assignment Models for Job Shop Scheduling with Genetic Programming. <i>Lecture Notes in Computer Science</i> , 2012 , 121-133	0.9	10	
114	A Unified Entropy-Based Distance Metric for Ordinal-and-Nominal-Attribute Data Clustering. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2020 , 31, 39-52	10.3	10	
113	Nontrivial global attractors in 2-D multistable attractor neural networks. <i>IEEE Transactions on Neural Networks</i> , 2009 , 20, 1842-51		9	
112	A Novel Time Series-Histogram of Features (TS-HoF) Method for Prognostic Applications. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2018 , 2, 204-213	4.1	9	
111	Deep infrared pedestrian classification based on automatic image matting. <i>Applied Soft Computing Journal</i> , 2019 , 77, 484-496	7.5	8	
110	Transformation of prosody in voice conversion 2017 ,		8	

109	Fast hypervolume approximation scheme based on a segmentation strategy. <i>Information Sciences</i> , 2020 , 509, 320-342	7.7	8
108	A Survey on Evolutionary Construction of Deep Neural Networks. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 894-912	15.6	8
107	Solving the IEEE CEC 2015 Dynamic Benchmark Problems Using Kalman Filter Based Dynamic Multiobjective Evolutionary Algorithm. <i>Proceedings in Adaptation, Learning and Optimization</i> , 2016 , 239-	252	7
106	An Energy-Based Sampling Technique for Multi-Objective Restricted Boltzmann Machine. <i>IEEE Transactions on Evolutionary Computation</i> , 2013 , 17, 767-785	15.6	7
105	A Multi-Objective Multi-Colony Ant Algorithm for Solving the Berth Allocation Problem. <i>Studies in Computational Intelligence</i> , 2008 , 333-350	0.8	7
104	Solving Dynamic Multiobjective Problem via Autoencoding Evolutionary Search. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	7
103	Paired Offspring Generation for Constrained Large-Scale Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 448-462	15.6	7
102	Robust Environmental Sound Recognition With Sparse Key-Point Encoding and Efficient Multispike Learning. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 625-638	10.3	7
101	A Gradient-Guided Evolutionary Approach to Training Deep Neural Networks. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	7
100	A Dispatching rule based Genetic Algorithm for Order Acceptance and Scheduling 2015 ,		6
99	Competitive Swarm Optimizer with Mutated Agents for Finding Optimal Designs for Nonlinear Regression Models with Multiple Interacting Factors. <i>Memetic Computing</i> , 2020 , 12, 219-233	3.4	6
98	Genetic Programming for Job Shop Scheduling. Studies in Computational Intelligence, 2019, 143-167	0.8	6
97	A Spiking Neural Network Model for Sound Recognition. <i>Communications in Computer and Information Science</i> , 2017 , 584-594	0.3	6
96	Multiway analysis of EEG artifacts based on Block Term Decomposition 2016,		6
95	An Opposition-based Self-adaptive Hybridized Differential Evolution Algorithm for Multi-objective Optimization (OSADE). <i>Proceedings in Adaptation, Learning and Optimization</i> , 2015 , 447-461	0.2	6
94	Evolving Deep Neural Networks via Cooperative Coevolution With Backpropagation. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 420-434	10.3	6
93	A Multiobjective Framework for Many-Objective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	6
92	Solving dynamic multi-objective optimization problems via support vector machine 2018,		6

(2021-2017)

91	Automatic Microstructure Defect Detection of Ti-6Al-4V Titanium Alloy by Regions-Based Graph. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2017 , 1, 87-96	4.1	5	
90	An Evolutionary Constraint-Handling Technique for Parametric Optimization of a Cancer Immunotherapy Model. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2019 , 3, 151	- 1 62	5	
89	Reliability evaluation of power-generating systems including time-dependent sources based on binary particle swarm optimization 2007 ,		5	
88	Multiobjective Evolutionary Neural Networks for Time Series Forecasting 2007 , 346-360		5	
87	A Novel Diversity Maintenance Scheme for Evolutionary Multi-objective Optimization. <i>Lecture Notes in Computer Science</i> , 2013 , 270-277	0.9	5	
86	Machine Learning Enhanced Multi-Objective Evolutionary Algorithm Based on Decomposition. <i>Lecture Notes in Computer Science</i> , 2013 , 553-560	0.9	5	
85	. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020 , 1-17	7.3	5	
84	Large-Scale optimization via Evolutionary Multitasking assisted Random Embedding 2020,		5	
83	QoS-Aware Web Service Selection with Internal Complementarity. <i>IEEE Transactions on Services Computing</i> , 2019 , 12, 276-289	4.8	5	
82	Constructing Accurate and Efficient Deep Spiking Neural Networks With Double-Threshold and Augmented Schemes. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	5	
81	Toward Efficient Processing and Learning With Spikes: New Approaches for Multispike Learning. <i>IEEE Transactions on Cybernetics</i> , 2020 ,	10.2	4	
80	On the analysis and evaluation of prosody conversion techniques 2017,		4	
79	Dynamic Evolutionary Multi-objective Optimization. Studies in Computational Intelligence, 2009, 125-157	20.8	4	
78	Probabilistic Based Evolutionary Optimizers in Bi-objective Travelling Salesman Problem. <i>Lecture Notes in Computer Science</i> , 2010 , 588-592	0.9	4	
77	A Bi-Objective Constrained Robust Gate Assignment Problem: Formulation, Instances and Algorithm. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 4488-4500	10.2	4	
76	Towards Faster Vehicle Routing by Transferring Knowledge From Customer Representation. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 1-14	6.1	4	
75	A novel grid-based differential evolution (DE) algorithm for many-objective optimization 2016,		4	
74	Hyperspectral Endmember Extraction by ([]- []] Multiobjective Differential Evolution Algorithm Based on Ranking Multiple Mutations. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2021 , 59, 2352-2364	8.1	4	

73	Progressive Tandem Learning for Pattern Recognition with Deep Spiking Neural Networks. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2021 , PP,	13.3	4
72	An Intelligent Packing Programming for Space Station Extravehicular Missions. <i>IEEE Computational Intelligence Magazine</i> , 2017 , 12, 38-47	5.6	3
71	Adaptive charting genetic programming for dynamic flexible job shop scheduling 2018,		3
70	Decomposition based dominance relationship for evolutionary many-objective algorithm 2017,		3
69	Evolutionary Architectural Search for Generative Adversarial Networks. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2022 , 1-12	4.1	3
68	Graph-Based Class-Imbalance Learning With Label Enhancement <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	3
67	A Fuzzy Decomposition-Based Multi/Many-Objective Evolutionary Algorithm. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	3
66	Improving Deep Learning based Optical Character Recognition via Neural Architecture Search 2020,		3
65	Identification of Autistic Risk Candidate Genes and Toxic Chemicals via Multilabel Learning. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 3971-3984	10.3	3
64	Gate-Layer Autoencoders with Application to Incomplete EEG Signal Recovery 2019,		3
63	Concept Drift-Tolerant Transfer Learning in Dynamic Environments. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	3
62	Temporal Learning in Multilayer Spiking Neural Networks Through Construction of Causal Connections. <i>Intelligent Systems Reference Library</i> , 2017 , 115-129	0.8	2
61	A Spiking Neural Network Model for Associative Memory Using Temporal Codes. <i>Proceedings in Adaptation, Learning and Optimization</i> , 2015 , 561-572	0.2	2
60	A novel Differential Evolution (DE) algorithm for multi-objective optimization 2014,		2
59	An investigation on sampling technique for multi-objective restricted Boltzmann machine 2010,		2
58	Public Goods Provision: An Evolutionary Game Theoretic Study Under Asymmetric Information. <i>IEEE Transactions on Games</i> , 2009 , 1, 105-120		2
57	A Comprehensive Competitive Swarm Optimizer for Large-Scale Multiobjective Optimization. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2021 , 1-14	7.3	2
56	Contrastive Learning Assisted-Alignment for Partial Domain Adaptation <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2022 , PP,	10.3	2

55	A Multi-Variation Multifactorial Evolutionary Algorithm for Large-Scale Multi-Objective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 1-1	15.6	2	
54	Adequacy of Empirical Performance Assessment for Multiobjective Evolutionary Optimizer 2007 , 893-9	07	2	
53	Learning From Weakly Labeled Data Based on Manifold Regularized Sparse Model. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	2	
52	A Multifactorial Optimization Framework Based on Adaptive Intertask Coordinate System. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	2	
51	A Variable Importance-Based Differential Evolution for Large-Scale Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	2	
50	Manifold Interpolation for Large-Scale Multiobjective Optimization via Generative Adversarial Networks. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	2	
49	Temporal Encoding and Multispike Learning Framework for Efficient Recognition of Visual Patterns. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	2	
48	Weighted Gate Layer Autoencoders. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	2	
47	Rapid Feedforward Computation by Temporal Encoding and Learning with Spiking Neurons. <i>Intelligent Systems Reference Library</i> , 2017 , 19-41	0.8	1	
46	Solving Dynamic Multi-objective Optimization Problems Using Incremental Support Vector Machine 2019 ,		1	
45	A New Framework for Self-adapting Control Parameters in Multi-objective Optimization 2015,		1	
44	Computational Intelligence for Brain Computer Interface [Guest Editorial]. <i>IEEE Computational Intelligence Magazine</i> , 2016 , 11, 18-18	5.6	1	
43	Solving Vehicle Routing Problem with Stochastic Demand Using Multi-objective Evolutionary Algorithm 2014 ,		1	
42	Learning believable game agents using sensor noise and action histogram. <i>Memetic Computing</i> , 2014 , 6, 215-232	3.4	1	
41	Diversity preservation with hybrid recombination for evolutionary multiobjective optimization 2014 ,		1	
40	A hierarchical organized memory model using spiking neurons 2013 ,		1	
39	A hippocampus CA3 spiking neural network model for storage and retrieval of sequential memory 2013 ,		1	
38	Preface for the special volume on Computational Intelligence in Scheduling. <i>Annals of Operations Research</i> , 2010 , 180, 1-2	3.2	1	

37	A memetic evolutionary search algorithm with variable length chromosome for rule extraction. <i>Conference Proceedings IEEE International Conference on Systems, Man, and Cybernetics</i> , 2008 ,	2	1
36	Designing a Recurrent Neural Network-based Controller for Gyro-Mirror Line-of-Sight Stabilization System using an Artificial Immune Algorithm. <i>Studies in Computational Intelligence</i> , 2007 , 189-209	0.8	1
35	Solving large-scale multiobjective optimization via the probabilistic prediction model. <i>Memetic Computing</i> ,1	3.4	1
34	Molecular Dynamics Optimizer 2007 , 302-316		1
33	Optimizing Niche Center for Multimodal Optimization Problems <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	1
32	A Spiking Neural Network System for Robust Sequence Recognition. <i>Intelligent Systems Reference Library</i> , 2017 , 89-113	0.8	1
31	Multi-Task Learning for Efficient Diagnosis of ASD and ADHD using Resting-State fMRI Data 2020,		1
30	A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization. <i>Memetic Computing</i> , 2021 , 13, 413-432	3.4	1
29	. IEEE Transactions on Evolutionary Computation, 2021 , 25, 492-507	15.6	1
28	Evolutionary Dynamic Multi-objective Optimization via Regression Transfer Learning 2019,		1
27	Transfer Learning Based Parallel Evolutionary Algorithm Framework for Bi-Level Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 1-1	15.6	1
26	Real-Time Path-Generation and Path-Following Using an Interoperable Multi-Agent Framework. <i>Unmanned Systems</i> , 2018 , 06, 231-250	3	1
25	A survey, taxonomy and progress evaluation of three decades of swarm optimisation. <i>Artificial Intelligence Review</i> ,1	9.7	0
24	Application of Precise-Spike-Driven Rule in Spiking Neural Networks for Optical Character Recognition. <i>Proceedings in Adaptation, Learning and Optimization</i> , 2015 , 65-75	0.2	O
23	Objective-Domain Dual Decomposition: An Effective Approach to Optimizing Partially Differentiable Objective Functions. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 923-934	10.2	0
22	Towards Large-Scale Evolutionary Multi-Tasking: A GPU-Based Paradigm. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 1-1	15.6	0
21	HuRAI: A brain-inspired computational model for human-robot auditory interface. <i>Neurocomputing</i> , 2021 , 465, 103-113	5.4	0
20	A Hierarchically Organized Memory Model with Temporal Population Coding. <i>Intelligent Systems</i> Reference Library, 2017 , 131-152	0.8	

(2021-2017)

19	Precise-Spike-Driven Synaptic Plasticity for Hetero Association of Spatiotemporal Spike Patterns. <i>Intelligent Systems Reference Library</i> , 2017 , 65-87	0.8
18	Spiking Neuron Based Cognitive Memory Model. Intelligent Systems Reference Library, 2017 , 153-172	0.8
17	Feed Optimization for Fluidized Catalytic Cracking using a Multi-Objective Evolutionary Algorithm. <i>Advances in Process Systems Engineering</i> , 2017 , 291-313	
16	A Novel Multi-objective Optimization Framework Combining NSGA-II and MOEA/D. <i>Proceedings in Adaptation, Learning and Optimization</i> , 2015 , 227-237	0.2
15	Special Issue of BICS 2016. Cognitive Computation, 2018, 10, 282-283	4.4
14	Type-2 Fuzzy Logic - Plodding on Steadily and Staying Relevant [Editor's Remarks]. <i>IEEE</i> Computational Intelligence Magazine, 2012 , 7, 2-8	5.6
13	CIS Publication Spotlight [Publication Spotlight]. <i>IEEE Computational Intelligence Magazine</i> , 2017 , 12, 6-9	5.6
12	CIS Publication Spotlight [Publication Spotlight]. <i>IEEE Computational Intelligence Magazine</i> , 2015 , 10, 5-7	5.6
11	Evolutionary Complex Engineering Optimization [Editor's Remarks]. <i>IEEE Computational Intelligence Magazine</i> , 2013 , 8, 2-6	5.6
10	Nothing's Too Small to Have an Impact [Editor's Remarks]. <i>IEEE Computational Intelligence Magazine</i> , 2011 , 6, 2-2	5.6
9	'Tis the Season to be Healthy! [Editor's Remarks]. IEEE Computational Intelligence Magazine, 2011, 6, 2-1	1 % .6
8	Propelling Bioinformatics a Notch Higher [Editor's Remarks]. <i>IEEE Computational Intelligence Magazine</i> , 2012 , 7, 2-12	5.6
7	A Multi-Objective Evolutionary Algorithm for Channel Routing Problems. <i>Studies in Computational Intelligence</i> , 2007 , 405-436	0.8
6	A Spike-Timing Based Integrated Model for Pattern Recognition. <i>Intelligent Systems Reference Library</i> , 2017 , 43-63	0.8
5	Feed Optimization for Fluidized Catalytic Cracking using a Multi-Objective Evolutionary Algorithm. <i>Advances in Process Systems Engineering</i> , 2008 , 277-299	
4	A Novel Hybrid Multi-objective Optimization Framework: Rotating the Objective Space. <i>Lecture Notes in Computer Science</i> , 2014 , 192-203	0.9
3	An Automatic Sound Classification Framework with Non-volatile Memory 2021 , 415-438	
2	IEEE CIS VP-Publications Vision Statement [Society Briefs]. <i>IEEE Computational Intelligence Magazine</i> , 2021 , 16, 5-6	5.6

Corrections to Cognitive Navigation by Neuro-Inspired Localization, Mapping, and Episodic Memory[Sep 18 751-761]. *IEEE Transactions on Cognitive and Developmental Systems*, **2018**, 10, 1165-11*6*5