
Sander Van den Bosch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/565098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 2018, 47, 852-908.	18.7	1,708
2	Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy and Environmental Science, 2015, 8, 1748-1763.	15.6	688
3	A sustainable wood biorefinery for low–carbon footprint chemicals production. Science, 2020, 367, 1385-1390.	6.0	631
4	Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy and Environmental Science, 2017, 10, 1551-1557.	15.6	503
5	Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chemical Society Reviews, 2018, 47, 8349-8402.	18.7	493
6	Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood. Chemical Communications, 2015, 51, 13158-13161.	2.2	298
7	Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al ₂ O ₃ catalyst pellets during lignin-first fractionation. Green Chemistry, 2017, 19, 3313-3326.	4.6	251
8	Influence of bio-based solvents on the catalytic reductive fractionation of birch wood. Green Chemistry, 2015, 17, 5035-5045.	4.6	214
9	Influence of Acidic (H ₃ PO ₄) and Alkaline (NaOH) Additives on the Catalytic Reductive Fractionation of Lignocellulose. ACS Catalysis, 2016, 6, 2055-2066.	5.5	191
10	Selective Nickelâ€Catalyzed Conversion of Model and Ligninâ€Derived Phenolic Compounds to Cyclohexanoneâ€Based Polymer Building Blocks. ChemSusChem, 2015, 8, 1805-1818.	3.6	137
11	Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood. ACS Sustainable Chemistry and Engineering, 2016, 4, 6894-6904.	3.2	120
12	Catalytic lignocellulose biorefining in <i>n</i> -butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green Chemistry, 2018, 20, 4607-4619.	4.6	113
13	Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chemistry, 2017, 19, 2561-2570.	4.6	102
14	Reductive catalytic fractionation of pine wood: elucidating and quantifying the molecular structures in the lignin oil. Chemical Science, 2020, 11, 11498-11508.	3.7	84
15	Catalytic Strategies Towards Lignin-Derived Chemicals. Topics in Current Chemistry, 2018, 376, 36.	3.0	75
16	Alkane production from biomass: chemo-, bio- and integrated catalytic approaches. Current Opinion in Chemical Biology, 2015, 29, 40-48.	2.8	74
17	Selective Conversion of Lignin-Derivable 4-Alkylguaiacols to 4-Alkylcyclohexanols over Noble and Non-Noble-Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2016, 4, 5336-5346.	3.2	66
18	Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform. Green Chemistry, 2018, 20, 1050-1058.	4.6	66

#	Article	IF	CITATIONS
19	Perspective on Overcoming Scale-Up Hurdles for the Reductive Catalytic Fractionation of Lignocellulose Biomass. Industrial & Engineering Chemistry Research, 2020, 59, 17035-17045.	1.8	59
20	Direct upstream integration of biogasoline production into current light straight run naphtha petrorefinery processes. Nature Energy, 2018, 3, 969-977.	19.8	58
21	Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing. Nature Plants, 2019, 5, 225-237.	4.7	50
22	Integrated techno-economic assessment of a biorefinery process: The high-end valorization of the lignocellulosic fraction in wood streams. Journal of Cleaner Production, 2020, 266, 122022.	4.6	45
23	Reductive catalytic fractionation of black locust bark. Green Chemistry, 2019, 21, 5841-5851.	4.6	43
24	Lignin-Based Additives for Improved Thermo-Oxidative Stability of Biolubricants. ACS Sustainable Chemistry and Engineering, 2021, 9, 12548-12559.	3.2	41
25	Identification and quantification of lignin monomers and oligomers from reductive catalytic fractionation of pine wood with GC — GC – FID/MS. Green Chemistry, 2022, 24, 191-206.	4.6	41
26	Catalytic fast pyrolysis of beech wood lignin isolated by different biomass (pre)treatment processes: Organosolv, hydrothermal and enzymatic hydrolysis. Applied Catalysis A: General, 2021, 623, 118298.	2.2	35
27	Low molecular weight and highly functional RCF lignin products as a full bisphenol a replacer in bio-based epoxy resins. Chemical Communications, 2021, 57, 5642-5645.	2.2	28
28	Catalytic Strategies Towards Lignin‑Derived Chemicals. Topics in Current Chemistry Collections, 2020, , 129-168.	0.2	10
29	Engineering Curcumin Biosynthesis in Poplar Affects Lignification and Biomass Yield. Frontiers in Plant Science, 0, 13, .	1.7	8
30	Reductive Catalytic Fractionation: From Waste Wood to Functional Phenolic Oligomers for Attractive, Value-Added Applications. ACS Symposium Series, 2021, , 37-60.	0.5	5
31	Preparation of Renewable Thiolâ€Yne "Click―Networks Based on Fractionated Lignin for Anticorrosive Protective Film Applications. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	2