Mingxue Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5650678/publications.pdf

Version: 2024-02-01

687363 677142 34 536 13 22 citations h-index g-index papers 34 34 34 458 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanobiocatalyst consisting of immobilized α-amylase on montmorillonite exhibiting enhanced enzymatic performance based on the allosteric effect. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112290.	5.0	8
2	Efficient extraction of U(VI) from uranium enrichment process wastewater by amine-aminophosphonate-modified polyacrylonitrile fibers. Science of the Total Environment, 2022, 831, 154743.	8.0	24
3	Preparation and characterization of chitosan/pullulan film loading carvacrol for targeted antibacterial packaging of chilled meat. International Journal of Biological Macromolecules, 2022, 211, 140-149.	7.5	28
4	Design and construction of copper-containing organophyllosilicates as laccase-mimicking nanozyme for efficient removal of phenolic pollutants. Journal of Materials Science, 2022, 57, 10084-10099.	3.7	6
5	Adsorption and Mechanism of Glycine on the Anatase with Exposed (001) and (101) Facets. Minerals (Basel, Switzerland), 2022, 12, 798.	2.0	3
6	Interface interaction between high-siliceous/calcareous mineral granules and model cell membranes dominated by electrostatic force. Environmental Science and Pollution Research, 2021, 28, 27432-27445.	5. 3	4
7	Bonding Behavior and Mechanism of U(VI) by Chemically Modified Deinococcus radiodurans. Minerals (Basel, Switzerland), 2021, $11,1108$.	2.0	2
8	The interaction between citronellol and bovine serum albumin: Spectroscopic, computational and thermal imaging studies. Journal of Molecular Structure, 2021, 1251, 131986.	3.6	3
9	Insights into the Nonclassical Crystallization of M(II) in the Biomineralization Process. ACS Symposium Series, 2020, , 259-293.	0.5	1
10	Removal of uranium by biogenetic jarosite coupled with photoinduced reduction in the presence of oxalic acid: a low-cost remediation technology. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 715-729.	1.5	12
11	Effects and mechanism of riboflavin on the growth ofAlcaligenes faecalisunder bias conditions. RSC Advances, 2019, 9, 22957-22965.	3.6	О
12	Synergistic effects of electron shuttle AQS and Alcaligenes faecalis on photocatalytic removal of U(VI). Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 731-742.	1.5	6
13	Characteristics and mechanism of uranium photocatalytic removal enhanced by chelating hole scavenger citric acid in a TiO2 suspension system. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319, 147-158.	1.5	16
14	Improving photoelectrochemical reduction of Cr(VI) ions by building \hat{i}_{\pm} -Fe2O3/TiO2 electrode. Environmental Science and Pollution Research, 2018, 25, 22455-22463.	5. 3	13
15	Spectroscopic evidence and molecular simulation investigation of the bonding interaction between lysine and montmorillonite: Implications for the distribution of soil organic nitrogen. Applied Clay Science, 2018, 159, 3-9.	5. 2	18
16	A high-efficiency photocatalyst, flaky anatase@natural rutile composite using one-step microwave hydrothermal synthesis. Research on Chemical Intermediates, 2018, 44, 705-720.	2.7	8
17	Synergistic interface behavior of strontium adsorption using mixed microorganisms. Environmental Science and Pollution Research, 2018, 25, 22368-22377.	5. 3	9
18	Meta-analysis of experimental warming on soil invertase and urease activities. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2018, 68, 104-109.	0.6	3

#	Article	IF	CITATIONS
19	Effects of riboflavin and AQS as electron shuttles on $U(\langle scp \rangle vi\langle scp \rangle)$ reduction and precipitation by $\langle i \rangle$ Shewanella putrefaciens $\langle i \rangle$. RSC Advances, 2018, 8, 30692-30700.	3.6	9
20	Kinetics and pH-dependent uranium bioprecipitation by Shewanella putrefaciens under aerobic conditions. Journal of Radioanalytical and Nuclear Chemistry, 2017, 312, 531-541.	1.5	30
21	Simultaneous removal and recovery of uranium from aqueous solution using TiO2 photoelectrochemical reduction method. Journal of Radioanalytical and Nuclear Chemistry, 2017, 313, 59-67.	1.5	47
22	Uranium Binding on <i>Landoltia punctata</i> as a Result of Formation of Insoluble Nano-U (VI) and U (IV) Phosphate Minerals. ACS Sustainable Chemistry and Engineering, 2017, 5, 1494-1502.	6.7	29
23	Contribution of surface functional groups and interface interaction to biosorption of strontium ions by Saccharomyces cerevisiae under culture conditions. RSC Advances, 2017, 7, 50880-50888.	3.6	20
24	Microscopic and Spectroscopic Insights into Uranium Phosphate Mineral Precipitated by <i>Bacillus Mucilaginosus</i> . ACS Earth and Space Chemistry, 2017, 1, 483-492.	2.7	38
25	Microbially Mediated Stable Uranium Phosphate Nano-Biominerals. Journal of Nanoscience and Nanotechnology, 2017, 17, 6771-6780.	0.9	14
26	Programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae and ashing analysis: A decrement solution for nuclide and heavy metal disposal. Journal of Hazardous Materials, 2016, 314, 295-303.	12.4	21
27	Subcellular distribution of uranium in the roots of Spirodela punctata and surface interactions. Applied Surface Science, 2015, 347, 122-130.	6.1	26
28	Metabolic Influence of Psychrophilic Diatoms on Travertines at the Huanglong Natural Scenic District of China. International Journal of Environmental Research and Public Health, 2014, 11, 13084-13096.	2.6	11
29	Nano-Scale Spatial Assessment of Calcium Distribution in Coccolithophores Using Synchrotron-Based Nano-CT and STXM-NEXAFS. International Journal of Molecular Sciences, 2014, 15, 23604-23615.	4.1	9
30	Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models. International Journal of Environmental Research and Public Health, 2014, 11, 6099-6118.	2.6	33
31	Histone-like Protein HCcp3-induced Liquid Crystalline DNA Condensation. Chemistry Letters, 2012, 41, 874-876.	1.3	1
32	Notice of Retraction: The Biosorption of Strontium by Immobilized Saccharomyces cerevisiae Cells under Culture Conditions. , $2011,\ldots$		0
33	Biosorption of uranium by Saccharomyces cerevisiae and surface interactions under culture conditions. Bioresource Technology, 2010, 101, 8573-8580.	9.6	84
34	Transformation of radionuclide occurrence state in uranium and strontium recycling by Saccharomyces cerevisiae. Journal of Radioanalytical and Nuclear Chemistry, 0, , .	1.5	0