
Jorge M SantamarÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5650616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. I. Water stress before anthesis. Australian Journal of Agricultural Research, 1990, 41, 51.	1.5	102
2	Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. II. Water stress after anthesis. Australian Journal of Agricultural Research, 1990, 41, 67.	1.5	96
3	The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity. Aquatic Toxicology, 2009, 91, 320-328.	1.9	86
4	Capacity ofSalvinia minima Baker to Tolerate and Accumulate As and Pb. Engineering in Life Sciences, 2004, 4, 61-65.	2.0	71
5	Stomata of MicropropagatedDelphiniumPlants Respond to ABA, CO2, Light and Water Potential, but Fail to Close Fully. Journal of Experimental Botany, 1993, 44, 99-107.	2.4	70
6	Exogenous sucrose can decrease in vitro photosynthesis but improve field survival and growth of coconut (Cocos nucifera L.) in vitro plantlets. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 69-76.	0.9	49
7	Glutathione plays a role in protecting leaves of Salvinia minima from Pb2+ damage associated with changes in the expression of SmGS genes and increased activity of GS. Environmental and Experimental Botany, 2012, 75, 188-194.	2.0	49
8	Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure. Aquatic Toxicology, 2016, 171, 37-47.	1.9	48
9	In silico cloning and characterization of the TGA (TGACG MOTIF-BINDING FACTOR) transcription factors subfamily in Carica papaya. Plant Physiology and Biochemistry, 2012, 54, 113-122.	2.8	44
10	Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes. Aquatic Toxicology, 2014, 155, 142-150.	1.9	43
11	Physiological and biochemical changes in shoots of coconut palms affected by lethal yellowing. New Phytologist, 1996, 134, 227-234.	3.5	35
12	Physiological differences and changes in global DNA methylation levels in Agave angustifolia Haw. albino variant somaclones during the micropropagation process. Plant Cell Reports, 2016, 35, 2489-2502.	2.8	34
13	Copper Stress on Photosynthesis of Black Mangle (Avicennia germinans). Anais Da Academia Brasileira De Ciencias, 2013, 85, 665-670.	0.3	33
14	The lack of control of water loss in micropropagated plants is not related to poor cuticle development. Physiologia Plantarum, 1994, 91, 191-195.	2.6	27
15	Multiple Effects of Cadmium on the Photosynthetic Apparatus of Avicennia germinans L. as Probed by OJIP Chlorophyll Fluorescence Measurements. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2007, 62, 265-272.	0.6	27
16	Papaya (Carica papaya L.): Origin, Domestication, and Production. , 2014, , 3-15.		26
17	Changes in the Alkaloid Content of Plants of Catharanthus roseus L. (Don). as a Result of Water Stress and Treatment with Abscisic Acid. Journal of Plant Physiology, 1993, 142, 244-247.	1.6	25
18	Preharvest foliar applications of glycine-betaine protects banana fruits from chilling injury during the postharvest stage. Chemical and Biological Technologies in Agriculture, 2015, 2, .	1.9	25

Jorge M SantamarÃa

#	Article	IF	CITATIONS
19	A novel Dreb2-type gene from Carica papaya confers tolerance under abiotic stress. Plant Cell, Tissue and Organ Culture, 2016, 125, 119-133.	1.2	24
20	High irradiance can minimize the negative effect of exogenous sucrose on the photosynthetic capacity of in vitro grown coconut plantlets. Biologia Plantarum, 2005, 49, 7-15.	1.9	22
21	Is Abscisic Acid Responsible for Abnormal Stomatal Closure in Coconut Palms Showing Lethal Yellowing?. Journal of Plant Physiology, 2000, 156, 319-322.	1.6	21
22	The NPR1 family of transcription cofactors in papaya: insights into its structure, phylogeny and expression. Genes and Genomics, 2012, 34, 379-390.	0.5	17
23	Bioaccumulation and effect of cadmium in the photosynthetic apparatus of <i>Prosopis juliflora</i> . Chemical Speciation and Bioavailability, 2016, 28, 1-6.	2.0	17
24	Cultivating in vitro coconut palms (Cocos nucifera) under glasshouse conditions with natural light, improves in vitro photosynthesis nursery survival and growth. Plant Cell, Tissue and Organ Culture, 2005, 83, 287-292.	1.2	16
25	The high content of β-carotene present in orange-pulp fruits of Carica papaya L. is not correlated with a high expression of the CpLCY-Ĩ²2 gene. Food Research International, 2017, 100, 45-56.	2.9	15
26	Genes coding for transporters showed a rapid and sharp increase in their expression in response to lead, in the aquatic fern (Salvinia minima Baker). Ecotoxicology and Environmental Safety, 2018, 147, 1056-1064.	2.9	14
27	Identification of the SHINE clade of AP2/ERF domain transcription factors genes in Carica papaya; Their gene expression and their possible role in wax accumulation and water deficit stress tolerance in a wild and a commercial papaya genotypes. Environmental and Experimental Botany, 2021, 183, 104341.	2.0	14
28	Stomatal physiology of a micropropagated CAM plant; Agave tequilana (Weber). Plant Growth Regulation, 1995, 16, 211-214.	1.8	12
29	The papaya CpAUX1/LAX and CpPIN genes: structure, phylogeny and expression analysis related to root formation on in vitro plantlets. Plant Cell, Tissue and Organ Culture, 2016, 126, 187-204.	1.2	12
30	Presence in Yucatan of mycoplasmalike organisms in <i>Cocos nucifera</i> palms showing lethal yellowing disease symptoms. Canadian Journal of Plant Pathology, 1991, 13, 135-138.	0.8	11
31	Biochemical Changes in Roots of Coconut Palms (Cocos nucifera L.) Affected by Lethal Yellowing. Journal of Plant Physiology, 1999, 155, 48-53.	1.6	10
32	Biosynthesis of lead nanoparticles by the aquatic water fern, Salvinia minima Baker, when exposed to high lead concentration. Colloids and Surfaces B: Biointerfaces, 2014, 114, 277-283.	2.5	10
33	Transcriptomic analysis reveals key transcription factors associated to drought tolerance in a wild papaya (Carica papaya) genotype. PLoS ONE, 2021, 16, e0245855.	1.1	10
34	Battle of Three: The Curious Case of Papaya Sticky Disease. Plant Disease, 2020, 104, 2754-2763.	0.7	9
35	LOW EXOGENOUS SUCROSE IMPROVES EX VITRO GROWTH AND PHOTOSYNTHESIS IN COCONUT IN VITRO PLANTLETS IF GROWN IN VITRO UNDER HIGH LIGHT. Acta Horticulturae, 2007, , 151-155.	0.1	8
36	Identification of novel ERF transcription factor genes in papaya and analysis of their expression in different tissues and in response to the plant defense inducer benzothiadiazole (BTH). Physiological and Molecular Plant Pathology, 2015, 91, 141-151.	1.3	7

Jorge M SantamarÃa

#	Article	IF	CITATIONS
37	Identification of up-regulated genes from the metal-hyperaccumulator aquatic fern Salvinia minima Baker, in response to lead exposure. Aquatic Toxicology, 2017, 193, 86-96.	1.9	7
38	Determination of total phenolic contents and antioxidant activities of fruits from wild and creole Carica papaya genotypes in comparison to commercial papaya cultivars. Journal of Food Measurement and Characterization, 2021, 15, 5669-5682.	1.6	7
39	Salinity affects pH and lead availability in two mangrove plant species. Environmental Research Communications, 2020, 2, 061004.	0.9	7
40	ACCLIMATIZATION, ROOTING AND FIELD ESTABLISHMENT OF MICROPROPAGATED PAPAYA PLANTS. Acta Horticulturae, 2009, , 373-378.	0.1	6
41	<i>Glomus intraradices</i> Attenuates the Negative Effect of Low Pi Supply on Photosynthesis and Growth of Papaya Maradol Plants. Journal of Botany, 2012, 2012, 1-8.	1.2	5
42	The Expression of CpAUX1/LAXs and Most of the Long-distance CpPINs Genes Increases as the Somatic Embryogenesis Process Develops in C. papaya cv. "Red Maradol― Journal of Plant Growth Regulation, 2018, 37, 502-516.	2.8	5
43	The interaction between exogenous IBA with sucrose, light and ventilation alters the expression of ARFs and Aux/IAA genes in Carica papaya plantlets. Plant Molecular Biology, 2022, 110, 107-130.	2.0	5
44	FIELD PERFORMANCE OF 100% HERMAPHRODITE MICROPROPAGATED PAPAYA PLANTS. Acta Horticulturae, 2007, , 219-222.	0.1	4
45	MANIPULATION OF ABIOTIC IN VITRO FACTORS TO IMPROVE THE PHYSIOLOGY AND SUBSEQUENT FIELD PERFORMANCE OF MICROPROPAGATED PLANTLETS. Acta Horticulturae, 2007, , 77-85.	0.1	4
46	Photosynthetic responses of a salt secretor mangrove, <i>Avicennia germinans</i> , exposed to salinity stress. Aquatic Ecosystem Health and Management, 2011, 14, 285-290.	0.3	4
47	New Cultivars Derived from Crosses between Commercial Cultivar and a Wild Population of Papaya Rescued at Its Center of Origin. Journal of Botany, 2014, 2014, 1-10.	1.2	4
48	Bioaccumulation and changes in the photosynthetic apparatus of Prosopis juliflora exposed to copper. Botanical Sciences, 2016, 94, 323.	0.3	3
49	Genetic profiling of wild accessions of papaya (Carica papaya L.) collected in Yucatan state by using amplified fragment length polymorphism (AFLP) markers. Acta Horticulturae, 2019, , 69-76.	0.1	2
50	Rhizogenesis on in-vitro plantlets of Carica papaya L.: identification and expression profiling of transcription repressors of response to auxin (Aux/IAA) and auxin response factor (ARF) genes. Acta Horticulturae, 2019, , 153-158.	0.1	1
51	An overall viewpoint of 30Âyears of genetically modified crops on the South American perspective. Theoretical and Experimental Plant Physiology, 2014, 26, 127-134.	1.1	Ο
52	Native Carica papaya: developing transcriptome resources to study water-deficit stress. Acta Horticulturae, 2019, , 77-84.	0.1	0
53	Validación del uso de marcadores moleculares de sexo y color en hÃbridos obtenidos de cruzas de Maradol x papaya criolla. Revista Mexicana De Ciencias Agricolas, 2016, 7, 767.	0.0	0
54	Performance of hermaphrodite <i>Carica papaya</i> in-vitro plants grown under greenhouse conditions in the tropics. Acta Horticulturae, 2019, , 159-164.	0.1	0

0

#	Article	IF	CITATIONS
55	Plant water relations , 2020, , 119-129.		0

56 Origin, history, composition and processing.. , 2020, , 1-11.