Jian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5650141/publications.pdf

Version: 2024-02-01

	117453	133063
11,786	34	59
citations	h-index	g-index
59	59	14921
docs citations	times ranked	citing authors
	citations 59	11,786 34 citations h-index 59 59

#	Article	IF	Citations
1	Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 2011, 10, 780-786.	13.3	5,120
2	An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013, 135, 8452-8455.	6.6	2,498
3	Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 2015, 6, 10035.	5. 8	466
4	Non-precious-metal catalysts for alkaline water electrolysis: <i>operando</i> characterizations, theoretical calculations, and recent advances. Chemical Society Reviews, 2020, 49, 9154-9196.	18.7	448
5	Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nature Energy, 2021, 6, 614-623.	19.8	274
6	Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nature Catalysis, 2021, 4, 212-222.	16.1	266
7	Carbon-based electrocatalysts for sustainable energy applications. Progress in Materials Science, 2021, 116, 100717.	16.0	216
8	Water Splitting with an Enhanced Bifunctional Double Perovskite. ACS Catalysis, 2018, 8, 364-371.	5.5	186
9	In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. Applied Catalysis B: Environmental, 2019, 254, 292-299.	10.8	141
10	Boosting Bifunctional Oxygen Electrolysis for Nâ€Doped Carbon via Bimetal Addition. Small, 2017, 13, 1604103.	5.2	118
11	Single-atom catalyst for high-performance methanol oxidation. Nature Communications, 2021, 12, 5235.	5.8	113
12	Formation of FeOOH Nanosheets Induces Substitutional Doping of CeO _{2â^²} <i>_x</i> with Highâ€Valence Ni for Efficient Water Oxidation. Advanced Energy Materials, 2021, 11, 2002731.	10.2	110
13	The effect of A-site and B-site substitution on BaFeO3â~δ: An investigation as a cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 297, 511-518.	4.0	102
14	Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction. Nature Communications, 2021, 12, 5676.	5.8	92
15	Stable and Highâ€Power Calciumâ€Ion Batteries Enabled by Calcium Intercalation into Graphite. Advanced Materials, 2020, 32, e1904411.	11.1	87
16	Boosting oxygen reduction/evolution reaction activities with layered perovskite catalysts. Chemical Communications, 2016, 52, 10739-10742.	2.2	83
17	Ca and In co-doped BaFeO 3â°Î′ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 324, 224-232.	4.0	79
18	A Review of Carbonâ€Supported Nonprecious Metals as Energyâ€Related Electrocatalysts. Small Methods, 2020, 4, 2000621.	4.6	76

#	Article	IF	CITATIONS
19	In situ growth of Pt ₃ Ni nanoparticles on an A-site deficient perovskite with enhanced activity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 6399-6404.	5.2	70
20	Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling. Applied Energy, 2019, 241, 433-443.	5.1	70
21	Pd/Fe ₂ O ₃ with Electronic Coupling Single-Site Pd–Fe Pair Sites for Low-Temperature Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2022, 144, 573-581.	6.6	69
22	Visualizing electronic interactions between iron and carbon by X-ray chemical imaging and spectroscopy. Chemical Science, 2015, 6, 3262-3267.	3.7	68
23	Low temperature pulsed laser deposition of garnet Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 films as all solid-state lithium battery electrolytes. Journal of Power Sources, 2017, 365, 43-52.	4.0	65
24	Energetics of Nanoparticle Exsolution from Perovskite Oxides. Journal of Physical Chemistry Letters, 2018, 9, 3772-3778.	2.1	65
25	A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries. Nature Communications, 2021, 12, 3369.	5.8	59
26	Ba0.5Sr0.5Co0.8Fe0.2O3â^î^î on N-doped mesoporous carbon derived from organic waste as a bi-functional oxygen catalyst. International Journal of Hydrogen Energy, 2016, 41, 10744-10754.	3.8	52
27	In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs. Journal of Power Sources, 2018, 385, 76-83.	4.0	51
28	Bridging the Charge Accumulation and High Reaction Order for Highâ€Rate Oxygen Evolution and Long Stable Znâ€Air Batteries. Advanced Functional Materials, 2022, 32, .	7.8	49
29	Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting. Journal of Power Sources, 2018, 401, 312-321.	4.0	41
30	Unlocking the Potential of Mechanochemical Coupling: Boosting the Oxygen Evolution Reaction by Mating Proton Acceptors with Electron Donors. Advanced Functional Materials, 2021, 31, 2008077.	7.8	40
31	Egg yolk-derived phosphorus and nitrogen dual doped nano carbon capsules for high-performance lithium ion batteries. Materials Letters, 2016, 167, 93-97.	1.3	38
32	A strategy for optimizing efficiencies of solar thermochemical fuel production based on nonstoichiometric oxides. International Journal of Hydrogen Energy, 2019, 44, 19585-19594.	3.8	38
33	P-Substituted Ba _{0.95} La _{0.05} FeO _{3â^Î} as a Cathode Material for SOFCs. ACS Applied Energy Materials, 2019, 2, 5472-5480.	2.5	36
34	The Role of Ceria in a Hybrid Catalyst toward Alkaline Water Oxidation. ChemSusChem, 2020, 13, 5273-5279.	3.6	36
35	Engineering the electronic structure of perovskite oxide surface with ionic liquid for enhanced oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 282, 119593.	10.8	35
36	Highly Active and Stable Cobalt-Free Hafnium-doped SrFe _{0.9} Hf _{0.1} O _{3â^'Î} Perovskite Cathode for Solid Oxide Fuel Cells. ACS Applied Energy Materials, 2018, 1, 2134-2142.	2.5	34

#	Article	IF	CITATIONS
37	H 2 O 2 Treated La 0.8 Sr 0.2 CoO 3-δas an Efficient Catalyst for Oxygen Evolution Reaction. Electrochimica Acta, 2017, 244, 139-145.	2.6	33
38	Mechanochemical Coupling of MoS ₂ and Perovskites for Hydrogen Generation. ACS Applied Energy Materials, 2018, 1, 6409-6416.	2.5	33
39	Boosting the anchoring and catalytic capability of MoS ₂ for high-loading lithium sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 17646-17656.	5 . 2	33
40	Ba0.95La0.05FeO3â^–multi-layer graphene as a low-cost and synergistic catalyst for oxygen evolution reaction. Carbon, 2015, 90, 122-129.	5.4	29
41	Recent Advances of First d-Block Metal-Based Perovskite Oxide Electrocatalysts for Alkaline Water Splitting. Catalysts, 2020, 10, 770.	1.6	28
42	Construction of Single-Phase Nickel Disulfide Microflowers as High-Performance Electrodes for Hybrid Supercapacitors. Energy & Samp; Fuels, 2020, 34, 10178-10187.	2. 5	27
43	In Situ Anchoring Co–N–C Nanoparticles on Co ₄ N Nanosheets toward Ultrastable Flexible Self‣upported Bifunctional Oxygen Electrocatalyst Enables Recyclable Zn–Air Batteries Over 10 000 Cycles and Fast Charging. Small, 2022, 18, e2105887.	5.2	22
44	Innovative non–oxidative methane dehydroaromatization via solar membrane reactor. Energy, 2021, 216, 119265.	4.5	21
45	Thermodynamic analysis of a solar thermochemical cycle-based direct coal liquefaction system for oil production. Energy, 2019, 179, 1279-1287.	4.5	20
46	Novel synthesis of Silicon/Carbon nanotubes microspheres as anode additives through chemical vapor deposition in fluidized bed reactors. Scripta Materialia, 2021, 192, 49-54.	2.6	19
47	Effects of cathode thickness and microstructural properties on the performance of protonic ceramic fuel cell (PCFC): A 3D modelling study. International Journal of Hydrogen Energy, 2022, 47, 4047-4061.	3 . 8	19
48	A bi-functional catalyst for oxygen reduction and oxygen evolution reactions from used baby diapers: \hat{l}_{\pm} -Fe $<$ sub $>$ 0 $<$ sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ wrapped in P and S dual doped graphitic carbon. RSC Advances, 2016, 6, 64258-64265.	1.7	18
49	Probing and Resolving the Heterogeneous Degradation of Nickelâ€Rich Layered Oxide Cathodes across Multiâ€Length Scales. Small Methods, 2020, 4, 2000551.	4.6	18
50	A mid/low-temperature solar-driven integrated membrane reactor for the dehydrogenation of propane $\hat{a} \in A$ thermodynamic assessment. Applied Thermal Engineering, 2021, 193, 116952.	3.0	11
51	Manipulating the Conversion Kinetics of Polysulfides by Engineering Oxygen pâ€Band of Halloysite for Improved Liâ€6 Batteries. Small, 2021, , 2105661.	5 . 2	11
52	Perspective of CIGS-BIPV's Product Competitiveness in China. International Journal of Photoenergy, 2020, 2020, 1-10.	1.4	9
53	One-Pot Heterointerfacial Metamorphosis for Synthesis and Control of Widely Varying Heterostructured Nanoparticles. Journal of the American Chemical Society, 2021, 143, 3383-3392.	6.6	9
54	Novel battery thermal management system with different shapes of pin fins. International Journal of Energy Research, 2022, 46, 5997-6011.	2.2	9

#	Article	IF	CITATIONS
55	Techno-economic analysis of a solar thermochemical cycle-based direct coal liquefaction system for low-carbon oil production. Energy, 2022, 239, 122167.	4.5	7
56	Environmental and economic multi-objective optimization of comprehensive energy industry: A case study. Energy, 2021, 237, 121534.	4.5	7
57	Introducing Ag in Ba0.9La0.1FeO3-: Combining cationic substitution with metal particle decoration. Materials Reports Energy, 2021, 1, 100018.	1.7	6
58	Theoretical Thermodynamic Efficiency Limit of Isothermal Solar Fuel Generation from H2O/CO2 Splitting in Membrane Reactors. Molecules, 2021, 26, 7047.	1.7	4
59	Thermodynamic Assessment of a Solar-Driven Integrated Membrane Reactor for Ethanol Steam Reforming. Molecules, 2021, 26, 6921.	1.7	2