

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5650087/publications.pdf Version: 2024-02-01

151 papers	11,694 citations	147801 31 h-index	46799 89 g-index
157	157	157	11881
all docs	docs citations	times ranked	citing authors

ARTICLE IF CITATIONS # Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset 4,024 Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging, 2016, 35, 1285-1298. ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification 9 2,038 and Localization of Common Thorax Diseases., 2017,,. Improving Computer-Aided Detection Using <? Pub_newline? > Convolutional Neural Networks and 8.9 465 Random View Aggregation. IEEE Transactions on Medical Imaging, 2016, 35, 1170-1181. DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation. Lecture 4 1.3 347 Notes in Computer Science, 2015, , 556-564. DeepPap: Deep Convolutional Networks for Cervical Cell Classification. IEEE Journal of Biomedical 6.3 317 and Health Informatics, 2017, 21, 1633-1643. DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with 1.5 288 6 deep learning. Journal of Medical Imaging, 2018, 5, 1. A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional 1.3 286 Neural Network Observations. Lecture Notes in Computer Science, 2014, 17, 520-527. TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in 8 261 Chest X-Rays. , 2018, , . Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas 11.6 localization and segmentation. Medical Image Analysis, 2018, 45, 94-107. Learning to Read Chest X-Rays: Recurrent Neural Cascade Model for Automated Image Annotation. 10 197 2016, , . Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6, 1-6. A Bottom-Up Approach for Pancreas Segmentation Using Cascaded Superpixels and (Deep) Image Patch 12 9.8 136 Labeling. IEEE Transactions on Image Processing, 2017, 26, 386-399. Anatomy-specific classification of medical images using deep convolutional nets., 2015,,. 109 Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation. Lecture 14 1.3 88 Notes in Computer Science, 2016, , 451-459. Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-Scale Lesion Database. , 2018, , . Progressive and Multi-path Holistically Nested Neural Networks for Pathological Lung Segmentation 16 1.373 from CT Images. Lecture Notes in Computer Science, 2017, , 621-629. Attention-Guided Curriculum Learning for Weakly Supervised Classification and Localization of 1.3 Thoracic Diseases on Chest Radiographs. Lecture Notes in Computer Science, 2018, , 249-258. Thorax-Net: An Attention Regularized Deep Neural Network for Classification of Thoracic Diseases on 18 6.3 66 Chest Radiography. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 475-485.

#	Article	IF	CITATIONS
19	Convolutional Invasion and Expansion Networks for Tumor Growth Prediction. IEEE Transactions on Medical Imaging, 2018, 37, 638-648.	8.9	64
20	Deep convolutional networks for pancreas segmentation in CT imaging. Proceedings of SPIE, 2015, , .	0.8	60
21	Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning. Nature Communications, 2021, 12, 5472.	12.8	57
22	Pancreas Segmentation in MRI Using Graph-Based Decision Fusion on Convolutional Neural Networks. Lecture Notes in Computer Science, 2016, 9901, 442-450.	1.3	57
23	Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks. Journal of Medical Imaging, 2017, 4, 1.	1.5	55
24	Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Computer Vision and Image Understanding, 2013, 117, 1072-1083.	4.7	53
25	Hierarchical Segmentation and Identification of Thoracic Vertebra Using Learning-Based Edge Detection and Coarse-to-Fine Deformable Model. Lecture Notes in Computer Science, 2010, 13, 19-27.	1.3	53
26	A Nonparametric Treatment for Location/Segmentation Based Visual Tracking. , 2007, , .		52
27	Interleaved text/image Deep Mining on a large-scale radiology database. , 2015, , .		52
28	Structured Landmark Detection via Topology-Adapting Deep Graph Learning. Lecture Notes in Computer Science, 2020, , 266-283.	1.3	52
29	Stratified learning of local anatomical context for lung nodules in CT images. , 2010, , .		47
30	Combined central and subspace clustering for computer vision applications. , 2006, , .		46
31	ChestX-ray: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases. Advances in Computer Vision and Pattern Recognition, 2019, , 369-392.	1.3	45
32	Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks. Medical Physics, 2017, 44, 4630-4642.	3.0	43
33	DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy. Medical Image Analysis, 2021, 68, 101909.	11.6	43
34	Mediastinal lymph node detection and station mapping on chest CT using spatial priors and random forest. Medical Physics, 2016, 43, 4362-4374.	3.0	42
35	Accurate Weakly-Supervised Deep Lesion Segmentation Using Large-Scale Clinical Annotations: Slice-Propagated 3D Mask Generation from 2D RECIST. Lecture Notes in Computer Science, 2018, , 396-404.	1.3	41
36	A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs. Nature Communications, 2021, 12, 1066.	12.8	40

#	Article	IF	CITATIONS
37	Spatio-Temporal Convolutional LSTMs for Tumor Growth Prediction by Learning 4D Longitudinal Patient Data. IEEE Transactions on Medical Imaging, 2020, 39, 1114-1126.	8.9	39
38	Combining fully convolutional networks and graph-based approach for automated segmentation of cervical cell nuclei. , 2017, , .		38
39	2D View Aggregation for Lymph Node Detection Using a Shallow Hierarchy of Linear Classifiers. Lecture Notes in Computer Science, 2014, 17, 544-552.	1.3	38
40	Organ at Risk Segmentation for Head and Neck Cancer Using Stratified Learning and Neural Architecture Search. , 2020, , .		37
41	Learning From Multiple Datasets With Heterogeneous and Partial Labels for Universal Lesion Detection in CT. IEEE Transactions on Medical Imaging, 2021, 40, 2759-2770.	8.9	35
42	Detection of Sclerotic Spine Metastases viaÂRandom Aggregation of Deep ConvolutionalÂNeural Network Classifications. Lecture Notes in Computational Vision and Biomechanics, 2015, , 3-12.	0.5	34
43	Accurate Esophageal Gross Tumor Volume Segmentation in PET/CT Using Two-Stream Chained 3D Deep Network Fusion. Lecture Notes in Computer Science, 2019, , 182-191.	1.3	34
44	HNO ₃ /HFIP: A Nitrating System for Arenes with Direct Observation of π-Complex Intermediates. Organic Letters, 2018, 20, 3197-3201.	4.6	33
45	Automatic Lymph Node Cluster Segmentation Using Holistically-Nested Neural Networks andÂStructured Optimization in CT Images. Lecture Notes in Computer Science, 2016, , 388-397.	1.3	31
46	Deep Learning for Fully Automated Prediction of Overall Survival in Patients with Oropharyngeal Cancer Using FDG-PET Imaging. Clinical Cancer Research, 2021, 27, 3948-3959.	7.0	29
47	Multi-level Ground Glass Nodule Detection and Segmentation in CT Lung Images. Lecture Notes in Computer Science, 2009, 12, 715-723.	1.3	29
48	Segmentation label propagation using deep convolutional neural networks and dense conditional random field. , 2016, , .		28
49	Unsupervised Joint Mining of Deep Features and Image Labels for Large-Scale Radiology Image Categorization and Scene Recognition. , 2017, , .		26
50	Iterative Attention Mining for Weakly Supervised Thoracic Disease Pattern Localization in Chest X-Rays. Lecture Notes in Computer Science, 2018, , 589-598.	1.3	26
51	CT Image Enhancement Using Stacked Generative Adversarial Networks and Transfer Learning for Lesion Segmentation Improvement. Lecture Notes in Computer Science, 2018, , 46-54.	1.3	25
52	Unsupervised body part regression via spatially self-ordering convolutional neural networks. , 2018, ,		25
53	Weakly Supervised Universal Fracture Detection in Pelvic X-Rays. Lecture Notes in Computer Science, 2019, , 459-467.	1.3	25
54	Pancreas Segmentation in MRI Using Graph-Based Decision Fusion on Convolutional Neural Networks. Lecture Notes in Computer Science, 2017, , 674-682.	1.3	24

#	Article	IF	CITATIONS
55	Base-promoted nucleophilic fluoroarenes substitution of C F bonds. Tetrahedron, 2018, 74, 303-307.	1.9	24
56	Deep LOGISMOS: Deep learning graph-based 3D segmentation of pancreatic tumors on CT scans. , 2018, , .		24
57	Quinazolinone Synthesis through Base-Promoted S _N Ar Reaction of <i>ortho</i> -Fluorobenzamides with Amides Followed by Cyclization. ACS Omega, 2019, 4, 8207-8213.	3.5	24
58	DeepPrognosis: Preoperative prediction of pancreatic cancer survival and surgical margin via comprehensive understanding of dynamic contrast-enhanced CT imaging and tumor-vascular contact parsing. Medical Image Analysis, 2021, 73, 102150.	11.6	24
59	Leveraging Mid-Level Semantic Boundary Cues for Automated Lymph Node Detection. Lecture Notes in Computer Science, 2015, , 53-61.	1.3	24
60	Deep convolutional networks for automated detection of posterior-element fractures on spine CT. Proceedings of SPIE, 2016, , .	0.8	23
61	AdaBoost on low-rank PSD matrices for metric learning. , 2011, , .		22
62	Active appearance model and deep learning for more accurate prostate segmentation on MRI. Proceedings of SPIE, 2016, , .	0.8	22
63	Pancreas Segmentation in CT and MRI via Task-Specific Network Design and Recurrent Neural Contextual Learning. Advances in Computer Vision and Pattern Recognition, 2019, , 3-21.	1.3	21
64	Efficient particle filtering using RANSAC with application to 3D face tracking. Image and Vision Computing, 2006, 24, 581-592.	4.5	20
65	Sparse Classification for Computer Aided Diagnosis Using Learned Dictionaries. Lecture Notes in Computer Science, 2011, 14, 41-48.	1.3	20
66	Self-learning to detect and segment cysts in lung CT images without manual annotation. , 2018, , .		20
67	Two-way desorption coupling to enhance the conversion of syngas into aromatics by MnO/H-ZSM-5. Catalysis Science and Technology, 2020, 10, 3366-3375.	4.1	19
68	Co-heterogeneous and Adaptive Segmentation from Multi-source and Multi-phase CT Imaging Data: A Study on Pathological Liver and Lesion Segmentation. Lecture Notes in Computer Science, 2020, , 448-465.	1.3	19
69	Deep Lesion Tracker: Monitoring Lesions in 4D Longitudinal Imaging Studies. , 2021, , .		19
70	Lesion-Harvester: Iteratively Mining Unlabeled Lesions and Hard-Negative Examples at Scale. IEEE Transactions on Medical Imaging, 2021, 40, 59-70.	8.9	18
71	Anatomy-Aware Siamese Network: Exploiting Semantic Asymmetry for Accurate Pelvic Fracture Detection in X-Ray Images. Lecture Notes in Computer Science, 2020, , 239-255.	1.3	18
72	NegBio: a high-performance tool for negation and uncertainty detection in radiology reports. AMIA Summits on Translational Science Proceedings, 2018, 2017, 188-196.	0.4	18

LE LU

#	Article	IF	CITATIONS
73	Accurate polyp segmentation for 3D CT colongraphy using multi-staged probabilistic binary learning and compositional model. , 2008, , .		17
74	Effective 3D object detection and regression using probabilistic segmentation features in CT images. , 2011, , .		16
75	A Bottom-Up Approach for Automatic Pancreas Segmentation in Abdominal CT Scans. Lecture Notes in Computer Science, 2014, , 103-113.	1.3	16
76	A Two Level Approach for Scene Recognition. , 0, , .		15
77	Lymph Node Gross Tumor Volume Detection and Segmentation via Distance-Based Gating Using 3D CT/PET Imaging in Radiotherapy. Lecture Notes in Computer Science, 2020, , 753-762.	1.3	15
78	Deep Esophageal Clinical Target Volume Delineation Using Encoded 3D Spatial Context of Tumors, Lymph Nodes, and Organs At Risk. Lecture Notes in Computer Science, 2019, , 603-612.	1.3	15
79	Simultaneous Detection and Registration for Ileo-Cecal Valve Detection in 3D CT Colonography. Lecture Notes in Computer Science, 2008, , 465-478.	1.3	15
80	Automatic Segmentation of Spinal Canals in CT Images via Iterative Topology Refinement. IEEE Transactions on Medical Imaging, 2015, 34, 1694-1704.	8.9	14
81	Artificial intelligence in radiology. , 2021, , 265-289.		14
82	Contour Transformer Network for One-Shot Segmentation of Anatomical Structures. IEEE Transactions on Medical Imaging, 2021, 40, 2672-2684.	8.9	14
83	Lymph Node Gross Tumor Volume Detection in Oncology Imaging via Relationship Learning Using Graph Neural Network. Lecture Notes in Computer Science, 2020, , 772-782.	1.3	14
84	Robust Pancreatic Ductal Adenocarcinoma Segmentation with Multi-institutional Multi-phase Partially-Annotated CT Scans. Lecture Notes in Computer Science, 2020, , 491-500.	1.3	13
85	A Two-Level Approach Towards Semantic Colon Segmentation: Removing Extra-Colonic Findings. Lecture Notes in Computer Science, 2009, 12, 1009-1016.	1.3	13
86	A Particle Filter without Dynamics for Robust 3D Face Tracking. , 0, , .		12
87	Coarse-to-fine classification via parametric and nonparametric models for computer-aided diagnosis. , 2011, , .		12
88	[Cu(malo NHC)]-catalyzed synthesis of 2-aryl pyrazolo[5,1- a]isoquinolines by annulation of N ′-(2-((trimethylsilyl)ethynyl)benzylidene)hydrazides with terminal aromatic alkynes. Tetrahedron, 2017, 73, 6428-6435.	1.9	12
89	Deep Volumetric Universal Lesion Detection Using Light-Weight Pseudo 3D Convolution and Surface Point Regression. Lecture Notes in Computer Science, 2020, , 3-13.	1.3	12
90	Personalized Pancreatic Tumor Growth Prediction via Group Learning. Lecture Notes in Computer Science, 2017, , 424-432.	1.3	12

LE LU

#	Article	lF	CITATIONS
91	Sequential Monte Carlo tracking of the marginal artery by multiple cue fusion and random forest regression. Medical Image Analysis, 2015, 19, 164-175.	11.6	11
92	Deep learning with orthogonal volumetric HED segmentation and 3D surface reconstruction model of prostate MRI. , 2017, , .		11
93	An analysis of robust cost functions for CNN in computer-aided diagnosis. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6, 253-258.	1.9	11
94	Weakly-Supervised Universal Lesion Segmentation with Regional Level SetÂLoss. Lecture Notes in Computer Science, 2021, , 515-525.	1.3	11
95	Knowledge Distillation with Adaptive Asymmetric Label Sharpening for Semi-supervised Fracture Detection in Chest X-Rays. Lecture Notes in Computer Science, 2021, , 599-610.	1.3	11
96	Natural Language Processing for Large-Scale Medical Image Analysis Using Deep Learning. , 2017, , 405-421.		10
97	Cascaded coarse-to-fine convolutional neural networks for pericardial effusion localization and segmentation on CT scans. , 2018, , .		9
98	Biaryl Formation via Base-Promoted Direct Coupling Reactions of Arenes with Aryl Halides. ACS Omega, 2021, 6, 15981-15987.	3.5	9
99	Effective Pancreatic Cancer Screening on Non-contrast CT Scans via Anatomy-Aware Transformers. Lecture Notes in Computer Science, 2021, , 259-269.	1.3	9
100	Towards Automated Colonoscopy Diagnosis: Binary Polyp Size Estimation via Unsupervised Depth Learning. Lecture Notes in Computer Science, 2018, , 611-619.	1.3	9
101	DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and Surgical Margin via Contrast-Enhanced CT Imaging. Lecture Notes in Computer Science, 2020, , 272-282.	1.3	9
102	Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging. Advances in Computer Vision and Pattern Recognition, 2017, , 113-136.	1.3	8
103	DeepStationing: Thoracic Lymph Node Station Parsing in CT Scans Using Anatomical Context Encoding and Key Organ Auto-Search. Lecture Notes in Computer Science, 2021, , 3-12.	1.3	8
104	Computer Aided Diagnosis Using Multilevel Image Features on Large-Scale Evaluation. Lecture Notes in Computer Science, 2014, , 161-174.	1.3	8
105	Robust Large Scale Prone-Supine Polyp Matching Using Local Features: A Metric Learning Approach. Lecture Notes in Computer Science, 2011, 14, 75-82.	1.3	8
106	Weakly-supervised deep learning of interstitial lung disease types on CT images. , 2019, , .		8
107	Automated segmentation of the thyroid gland on thoracic CT scans by multiatlas label fusion and random forest classification. Journal of Medical Imaging, 2015, 2, 044006.	1.5	7
108	Colitis detection on computed tomography using regional convolutional neural networks. , 2016, , .		7

#	Article	IF	CITATIONS
109	Dual XH–π Interaction of Hexafluoroisopropanol with Arenes. Molecules, 2021, 26, 4558.	3.8	7
110	CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT. Lecture Notes in Computer Science, 2019, , 139-147.	1.3	7
111	JSSR: A Joint Synthesis, Segmentation, and Registration System for 3D Multi-modal Image Alignment of Large-Scale Pathological CT Scans. Lecture Notes in Computer Science, 2020, , 257-274.	1.3	7
112	Semantic Context Forests for Learning-Based Knee Cartilage Segmentation in 3D MR Images. Lecture Notes in Computer Science, 2014, , 105-115.	1.3	7
113	Multi-Institutional Validation of Two-Streamed Deep Learning Method for Automated Delineation of Esophageal Gross Tumor Volume Using Planning CT and FDG-PET/CT. Frontiers in Oncology, 2021, 11, 785788.	2.8	7
114	Computer Aided Detection of Spinal Degenerative Osteophytes on Sodium Fluoride PET/CT. Lecture Notes in Computational Vision and Biomechanics, 2014, , 51-60.	0.5	6
115	Pelvic artery calcification detection on CT scans using convolutional neural networks. Proceedings of SPIE, 2017, , .	0.8	6
116	Deep Medical Image Computing in Preventive and Precision Medicine. IEEE MultiMedia, 2018, 25, 109-113.	1.7	6
117	Base-Promoted Annulation of Amidoximes with Alkynes: Simple Access to 2,4-Disubstituted Imidazoles. Molecules, 2020, 25, 3621.	3.8	6
118	SAME: Deformable Image Registration Based on Self-supervised Anatomical Embeddings. Lecture Notes in Computer Science, 2021, , 87-97.	1.3	6
119	Lesion Segmentation and RECIST Diameter Prediction via Click-Driven Attention and Dual-Path Connection. Lecture Notes in Computer Science, 2021, , 341-351.	1.3	6
120	Multi-label Deep Regression and Unordered Pooling for Holistic Interstitial Lung Disease Pattern Detection. Lecture Notes in Computer Science, 2016, , 147-155.	1.3	6
121	A Decomposable Model for the Detection of Prostate Cancer in Multi-parametric MRI. Lecture Notes in Computer Science, 2018, , 930-939.	1.3	5
122	Learning to Segment Anatomical Structures Accurately from One Exemplar. Lecture Notes in Computer Science, 2020, , 678-688.	1.3	5
123	Computer Aided Diagnosis Using Multilevel Image Features on Large-Scale Evaluation. Lecture Notes in Computer Science, 2014, , 161-174.	1.3	5
124	Sequential Monte Carlo Tracking for Marginal Artery Segmentation on CT Angiography by Multiple Cue Fusion. Lecture Notes in Computer Science, 2013, 16, 518-525.	1.3	5
125	Constrained planar motion analysis by decomposition. Image and Vision Computing, 2004, 22, 379-389.	4.5	4
126	Automated segmentation of thyroid gland on CT images with multi-atlas label fusion and random classification forest. Proceedings of SPIE, 2015, , .	0.8	4

LE LU

#	Article	IF	CITATIONS
127	Colitis detection on abdominal CT scans by rich feature hierarchies. Proceedings of SPIE, 2016, , .	0.8	4
128	Conversion of β-glycopyranoside to α-glycopyranoside by photo-activated radical reaction. Tetrahedron Letters, 2016, 57, 2474-2477.	1.4	4
129	Atherosclerotic vascular calcification detection and segmentation on low dose computed tomography scans using convolutional neural networks. , 2017, , .		4
130	A Monomerâ€Polymerâ€Monomer (MPM) Organic Synthesis Strategy: Synthesis and Application of Polybenzofuran for Functionalizing Benzene Ring of Benzofuran. Asian Journal of Organic Chemistry, 2021, 10, 2137-2142.	2.7	4
131	Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labeling. Advances in Computer Vision and Pattern Recognition, 2017, , 279-302.	1.3	4
132	Efficient False Positive Reduction in Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation. Advances in Computer Vision and Pattern Recognition, 2017, , 35-48.	1.3	4
133	User-Guided Domain Adaptation for Rapid Annotation from User Interactions: A Study on Pathological Liver Segmentation. Lecture Notes in Computer Science, 2020, , 457-467.	1.3	4
134	Automated segmentation of the thyroid gland on CT using multi-atlas label fusion and random forest. , 2015, , .		3
135	Parallel implementation of the FLICM algorithm for SAR image change detection on intel MIC. , 2016, , .		3
136	Accurate 3D bone segmentation in challenging CT images: Bottom-up parsing and contextualized optimization. , 2016, , .		3
137	Hierarchical learning for tubular structure parsing in medical imaging: A study on coronary arteries using 3D CT Angiography. , 2009, , .		2
138	Detection and station mapping of mediastinal lymph nodes on thoracic computed tomography using spatial prior from multi-atlas label fusion. , 2014, , .		2
139	Multilevel image recognition using discriminative patches and kernel covariance descriptor. , 2014, , .		2
140	Automatic MR prostate segmentation by deep learning with holistically-nested networks. Proceedings of SPIE, 2017, , .	0.8	2
141	Reliable Liver Fibrosis Assessment from Ultrasound Using Global Hetero-Image Fusion and View-Specific Parameterization. Lecture Notes in Computer Science, 2020, , 606-615.	1.3	2
142	Text mining and deep learning for disease classification. , 2020, , 109-135.		1
143	Automatic and Reliable Segmentation of Spinal Canals in Low-Resolution, Low-Contrast CT Images. Lecture Notes in Computational Vision and Biomechanics, 2014, , 15-24.	0.5	1
144	Automatic Classification and Reporting of Multiple Common Thorax Diseases Using Chest Radiographs. Advances in Computer Vision and Pattern Recognition, 2019, , 393-412.	1.3	1

#	Article	IF	CITATIONS
145	Concentric mosaic(s), planar motion and 1D cameras. , 0, , .		0
146	Robust automated lymph node segmentation with random forests. Proceedings of SPIE, 2014, , .	0.8	0
147	Liver Tumor Localization and Characterization from Multi-phase MR Volumes Using Key-Slice Prediction: AÂPhysician-Inspired Approach. Lecture Notes in Computer Science, 2021, , 47-58.	1.3	0
148	Hetero-Modal Learning and Expansive Consistency Constraints for Semi-supervised Detection from Multi-sequence Data. Lecture Notes in Computer Science, 2021, , 296-305.	1.3	0
149	Correcting Misalignment of Automatic 3D Detection by Classification: Ileo-Cecal Valve False Positive Reduction in CT Colonography. Lecture Notes in Computer Science, 2011, , 118-129.	1.3	0
150	Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database. Advances in Computer Vision and Pattern Recognition, 2017, , 305-321.	1.3	0
151	A coarse-to-fine approach for pericardial effusion localization and segmentation in chest CT scans. , 2018, , .		0