Thomas W Giambelluca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5649314/publications.pdf

Version: 2024-02-01

76294 64755 7,248 130 40 79 h-index g-index citations papers 138 138 138 8698 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Building a portal for climate data—Mapping automation, visualization, and dissemination. Concurrency Computation Practice and Experience, 2023, 35, .	1.4	4
2	Dynamical Downscaling of Nearâ€√erm (2026–2035) Climate Variability and Change for the Main Hawaiian Islands. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
3	Optimizing Automated Kriging to Improve Spatial Interpolation of Monthly Rainfall over Complex Terrain. Journal of Hydrometeorology, 2022, 23, 561-572.	0.7	17
4	Stochastic daily rainfall generation on tropical islands with complex topography. Hydrology and Earth System Sciences, 2022, 26, 2113-2129.	1.9	2
5	Climate change impacts shifting landscape of the dairy industry in Hawaiâ€~i. Translational Animal Science, 2022, 6, .	0.4	4
6	Multi-Stemmed Habit in Trees Contributes Climate Resilience in Tropical Dry Forest. Sustainability, 2022, 14, 6779.	1.6	1
7	Hourly rainfall data from rain gauge networks and weather radar up to 2020 across the Hawaiian Islands. Scientific Data, 2022, 9, .	2.4	4
8	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
9	Tree Canopies Reflect Mycorrhizal Composition. Geophysical Research Letters, 2021, 48, e2021GL092764.	1.5	21
10	Spatial Patterns and Trends in Surface Air Temperatures and Implied Changes in Atmospheric Moisture Across the Hawaiian Islands, 1905–2017. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031571.	1.2	20
11	Hydrological effects of tree invasion on a dry coastal Hawaiian ecosystem. Forest Ecology and Management, 2020, 458, 117653.	1.4	4
12	Distinguishing Variability Regimes of Hawaiian Summer Rainfall: Quasiâ€Biennial and Interdecadal Oscillations. Geophysical Research Letters, 2020, 47, e2020GL091260.	1.5	4
13	Fire and Rain: The Legacy of Hurricane Lane in Hawaiʻi. Bulletin of the American Meteorological Society, 2020, 101, E954-E967.	1.7	11
14	How will rainfall change over Hawaiâ€~i in the future? High-resolution regional climate simulation of the Hawaiian Islands. Bulletin of Atmospheric Science and Technology, 2020, 1, 459-490.	0.4	15
15	Characterizing the Uncertainty and Assessing the Value of Gap-Filled Daily Rainfall Data in Hawaii. Journal of Applied Meteorology and Climatology, 2020, 59, 1261-1276.	0.6	21
16	The Hawaiâ€~i Rainfall Analysis and Mapping Application (HI-RAMA): Decision Support and Data Visualization for Statewide Rainfall Data. , 2020, , .		4
17	Methodological Intercomparisons of Station-Based Gridded Meteorological Products: Utility, Limitations, and Paths Forward. Journal of Hydrometeorology, 2019, 20, 531-547.	0.7	20
18	High-Resolution Gridded Daily Rainfall and Temperature for the Hawaiian Islands (1990–2014). Journal of Hydrometeorology, 2019, 20, 489-508.	0.7	21

#	Article	IF	Citations
19	Throughfall partitioning by trees. Hydrological Processes, 2019, 33, 1698-1708.	1.1	53
20	Use of Daily Station Observations to Produce High-Resolution Gridded Probabilistic Precipitation and Temperature Time Series for the Hawaiian Islands. Journal of Hydrometeorology, 2019, 20, 509-529.	0.7	21
21	Temperature trends in Hawaiʻi: A century of change, 1917–2016. International Journal of Climatology, 2019, 39, 3987-4001.	1.5	14
22	Restoring to the future: Environmental, cultural, and management tradeâ€offs in historical versus hybrid restoration of a highly modified ecosystem. Conservation Letters, 2019, 12, e12606.	2.8	22
23	Compilation of climate data from heterogeneous networks across the Hawaiian Islands. Scientific Data, 2018, 5, 180012.	2.4	36
24	The influence of ENSO, PDO and PNA on secular rainfall variations in Hawaiâ€~i. Climate Dynamics, 2018, 51, 2127-2140.	1.7	25
25	Will climate change shift the lower ecotone of tropical montane cloud forests upwards on islands?. Journal of Biogeography, 2018, 45, 1326-1333.	1.4	19
26	Spatial patterns of seasonal crop production suggest coordination within and across dryland agricultural systems of Hawaiʻi Island. Ecology and Society, 2018, 23, .	1.0	13
27	Bringing multiple values to the table: assessing future land-use and climate change in North Kona, Hawaiʻi. Ecology and Society, 2018, 23, .	1.0	24
28	Climate sensitive size-dependent survival in tropical trees. Nature Ecology and Evolution, 2018, 2, 1436-1442.	3.4	41
29	Differences in seasonality and temperature dependency of stand transpiration and canopy conductance between Japanese cypress (Hinoki) and Japanese cedar (Sugi) in a plantation. Hydrological Processes, 2017, 31, 1952-1965.	1.1	16
30	Global risk of deadly heat. Nature Climate Change, 2017, 7, 501-506.	8.1	887
31	Transpiration of trees in a cool temperate forest on Mt. Aso, Japan: comparison of model simulation and measurements. Ecological Research, 2017, 32, 547-557.	0.7	2
32	Spatial trend analysis of Hawaiian rainfall from 1920 to 2012. International Journal of Climatology, 2017, 37, 2522-2531.	1.5	82
33	Modeled Effects of Climate Change and Plant Invasion on Watershed Function Across a Steep Tropical Rainfall Gradient. Ecosystems, 2017, 20, 583-600.	1.6	16
34	Estimating Cost-Effectiveness of Hawaiian Dry Forest Restoration Using Spatial Changes in Water Yield and Landscape Flammability Under Climate Change. Pacific Science, 2017, 71, 401-424.	0.2	22
35	Nonâ€native tree in a dry coastal area in Hawai'i has high transpiration but restricts water use despite phreatophytic trait. Ecohydrology, 2016, 9, 1166-1176.	1.1	9
36	Comparison of geostatistical approaches to spatially interpolate monthâ€year rainfall for the Hawaiian Islands. International Journal of Climatology, 2016, 36, 1459-1470.	1.5	99

#	Article	IF	Citations
37	An Assessment of Diurnal and Seasonal Cloud Cover Changes over the Hawaiian Islands Using Terra and Aqua MODIS*. Journal of Climate, 2016, 29, 77-90.	1.2	9
38	Evapotranspiration of rubber (<i>Hevea brasiliensis</i>) cultivated at two plantation sites in <scp>S</scp> outheast <scp>A</scp> sia. Water Resources Research, 2016, 52, 660-679.	1.7	58
39	A Five-Century Reconstruction of Hawaiian Islands Winter Rainfall. Journal of Climate, 2016, 29, 5661-5674.	1.2	20
40	Erratum to "Impact of uncertainty in soil, climatic, and chemical information in a pesticide leaching assessment". Journal of Contaminant Hydrology, 2016, 194, 59-72.	1.6	1
41	Change in trade wind inversion frequency implicated in the decline of an alpine plant. Climate Change Responses, 2016, 3, .	2.6	22
42	Erosion Potential under <i>Miconia calvescens</i> Stands on the Island of Hawaiâ€ĩ. Land Degradation and Development, 2015, 26, 218-226.	1.8	50
43	Sustained Increases in Lower-Tropospheric Subsidence over the Central Tropical North Pacific Drive a Decline in High-Elevation Rainfall in Hawaii. Journal of Climate, 2015, 28, 8743-8759.	1.2	36
44	Statistical downscaling of rainfall changes in Hawaiâ€i based on the CMIP5 global model projections. Journal of Geophysical Research D: Atmospheres, 2015, 120, 92-112.	1.2	98
45	How do rubber (Hevea brasiliensis) plantations behave under seasonal water stress in northeastern Thailand and central Cambodia?. Agricultural and Forest Meteorology, 2015, 213, 10-22.	1.9	30
46	Temporal solar radiation change at high elevations in Hawaiâ€ĩi. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6022-6033.	1.2	16
47	Small islands, valuable insights: systems of customary resource use and resilience to climate change in the Pacific. Ecology and Society, 2014, 19, .	1.0	126
48	Water relations and microclimate around the upper limit of a cloud forest in Maui, Hawai'i. Tree Physiology, 2014, 34, 766-777.	1.4	19
49	Transpiration characteristics of a rubber plantation in central Cambodia. Tree Physiology, 2014, 34, 285-301.	1.4	32
50	Moisture status during a strong El Niño explains a tropical montane cloud forest's upper limit. Oecologia, 2014, 175, 273-284.	0.9	31
51	Changing climate and the altitudinal range of avian malaria in the Hawaiian Islands – an ongoing conservation crisis on the island of Kaua'i. Global Change Biology, 2014, 20, 2426-2436.	4.2	83
52	Mora et al. reply. Nature, 2014, 511, E5-E6.	13.7	8
53	Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty. Journal of Hydrology, 2014, 519, 2020-2039.	2.3	45
54	Use of a clear-day solar radiation model to homogenize solar radiation measurements in Hawaiâ€i. Solar Energy, 2013, 91, 102-110.	2.9	9

#	Article	IF	Citations
55	The projected timing of climate departure from recent variability. Nature, 2013, 502, 183-187.	13.7	579
56	Hydro-climatic effects of future land-cover/land-use change in montane mainland southeast Asia. Climatic Change, 2013, 118, 213-226.	1.7	15
57	Leaf and Soil-plant Hydraulic Processes in the Transpiration of Tropical Forest. Procedia Environmental Sciences, 2013, 19, 77-85.	1.3	1
58	Simulation of canopy CO2/H2O fluxes for a rubber (Hevea brasiliensis) plantation in central Cambodia: The effect of the regular spacing of planted trees. Ecological Modelling, 2013, 265, 124-135.	1.2	14
59	Online Rainfall Atlas of Hawaiâ€~i. Bulletin of the American Meteorological Society, 2013, 94, 313-316.	1.7	527
60	Climateâ€associated population declines reverse recovery and threaten future of an iconic highâ€elevation plant. Global Change Biology, 2013, 19, 911-922.	4.2	49
61	On the relation between largeâ€scale circulation pattern and heavy rain events over the Hawaiian Islands: Recent trends and future changes. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4129-4141.	1.2	15
62	Modeling clearâ€sky solar radiation across a range of elevations in Hawaiâ€~i: Comparing the use of input parameters at different temporal resolutions. Journal of Geophysical Research, 2012, 117, .	3.3	8
63	Estimation of Root Zone Soil Moisture Using Apparent Thermal Inertia With MODIS Imagery Over a Tropical Catchment in Northern Thailand. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 752-761.	2.3	31
64	The hydrology of the humid tropics. Nature Climate Change, 2012, 2, 655-662.	8.1	284
65	Changes in atmospheric circulation patterns associated with high and low rainfall regimes in the Hawaiian Islands region on multiple time scales. Global and Planetary Change, 2012, 98-99, 97-108.	1.6	34
66	Simulating Land-Cover Change in Montane Mainland Southeast Asia. Environmental Management, 2012, 49, 968-979.	1.2	74
67	Hydrology and Biogeochemistry of Tropical Montane Cloud Forests. Ecological Studies, 2011, , 221-259.	0.4	16
68	Changes in the vertical profiles of mean temperature and humidity in the Hawaiian Islands. Global and Planetary Change, 2011, 77, 21-25.	1.6	43
69	Canopy water balance of windward and leeward Hawaiian cloud forests on HaleakalÄ, Maui, Hawai'i. Hydrological Processes, 2011, 25, 438-447.	1.1	39
70	Rainfall partitioning and cloud water interception in native forest and invaded forest in Hawai'i Volcanoes National Park. Hydrological Processes, 2011, 25, 448-464.	1.1	60
71	Lumped parameter sensitivity analysis of a distributed hydrological model within tropical and temperate catchments. Hydrological Processes, 2011, 25, 2405-2421.	1.1	42
72	Faster returns on †leaf economics' and different biogeochemical niche in invasive compared with native plant species. Global Change Biology, 2010, 16, 2171-2185.	4.2	157

#	Article	IF	Citations
73	Hydrologic effects of the expansion of rubber (<i>Hevea brasiliensis</i>) in a tropical catchment. Ecohydrology, 2010, 3, 306-314.	1.1	109
74	Environmental Consequences of the Demise in Swidden Cultivation in Montane Mainland Southeast Asia: Hydrology and Geomorphology. Human Ecology, 2009, 37, 361-373.	0.7	154
7 5	Evapotranspiration and energy balance of native wet montane cloud forest in Hawaiâ€~i. Agricultural and Forest Meteorology, 2009, 149, 230-243.	1.9	67
76	Throughfall in an evergreen-dominated forest stand in northern Thailand: Comparison of mobile and stationary methods. Agricultural and Forest Meteorology, 2009, 149, 373-384.	1.9	64
77	Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. Agricultural and Forest Meteorology, 2009, 149, 1365-1376.	1.9	105
78	The roles of roads and agricultural land use in altering hydrological processes in Nam Mae Rim watershed, northern Thailand. Hydrological Processes, 2008, 22, 4339-4354.	1.1	27
79	Local hydrologic effects of introducing nonâ€native vegetation in a tropical catchment. Ecohydrology, 2008, 1, 13-22.	1.1	69
80	Scaling of Frond Form in Hawaiian Tree Fern <i>Cibotium glaucum</i> : Compliance with Global Trends and Application for Field Estimation. Biotropica, 2008, 40, 686-691.	0.8	12
81	Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna. Agricultural and Forest Meteorology, 2008, 148, 839-849.	1.9	96
82	Secular temperature changes in Hawaiâ€~i. Geophysical Research Letters, 2008, 35, .	1.5	121
83	Near-surface hydrologic response for a steep, unchanneled catchment near Coos Bay, Oregon: 1. sprinkling experiments. Numerische Mathematik, 2007, 307, 678-708.	0.7	41
84	Inversion Variability in the Hawaiian Trade Wind Regime. Journal of Climate, 2007, 20, 1145-1160.	1,2	148
85	Hydrological consequences of landscape fragmentation in mountainous northern Vietnam: Buffering of Hortonian overland flow. Journal of Hydrology, 2007, 337, 52-67.	2.3	47
86	Soil translocation by weeding on steep-slope swidden fields in northern Vietnam. Soil and Tillage Research, 2007, 96, 219-233.	2.6	24
87	Use of the distributed hydrology soil vegetation model to study road effects on hydrological processes in Pang Khum Experimental Watershed, northern Thailand. Forest Ecology and Management, 2006, 224, 81-94.	1.4	64
88	Effective slope lengths for buffering hillslope surface runoff in fragmented landscapes in northern Vietnam. Forest Ecology and Management, 2006, 224, 104-118.	1.4	25
89	Reduction of Stream Sediment Concentration by a Riparian Buffer: Filtering of Road Runoff in Disturbed Headwater Basins of Montane Mainland Southeast Asia. Journal of Environmental Quality, 2006, 35, 151-162.	1.0	32
90	Toward understanding the cumulative impacts of roads in upland agricultural watersheds of northern Thailand. Agriculture, Ecosystems and Environment, 2004, 104, 145-158.	2.5	93

#	Article	IF	CITATIONS
91	Linking Household and Remotely Sensed Data for Understanding Forest Fragmentation in Northern Vietnam., 2004,, 201-221.		4
92	Hydrological consequences of landscape fragmentation in mountainous northern Vietnam: evidence of accelerated overland flow generation. Journal of Hydrology, 2004, 287, 124-146.	2.3	150
93	Transpiration in a small tropical forest patch. Agricultural and Forest Meteorology, 2003, 117, 1-22.	1.9	74
94	Improved method for modelling sediment transport on unpaved roads using KINEROS2 and dynamic erodibility. Hydrological Processes, 2002, 16, 3079-3089.	1.1	18
95	Hydrology of altered tropical forest. Hydrological Processes, 2002, 16, 1665-1669.	1.1	99
96	Acceleration of Horton overland flow and erosion by footpaths in an upland agricultural watershed in northern Thailand. Geomorphology, 2001, 41, 249-262.	1.1	40
97	Interstorm surface preparation and sediment detachment by vehicle traffic on unpaved mountain roads. Earth Surface Processes and Landforms, 2001, 26, 235-250.	1.2	85
98	Horton overland flow contribution to runoff on unpaved mountain roads: A case study in northern Thailand. Hydrological Processes, 2001, 15, 3203-3208.	1.1	36
99	Erosion prediction on unpaved mountain roads in northern Thailand: validation of dynamic erodibility modelling using KINEROS2. Hydrological Processes, 2001, 15, 337-358.	1.1	36
100	Supercooling Capacity Increases from Sea Level to Tree Line in the Hawaiian Tree Species Metrosideros polymorpha. International Journal of Plant Sciences, 2000, 161, 369-379.	0.6	29
101	Runoff generation and sediment production on unpaved roads, footpaths and agricultural land surfaces in northern Thailand., 2000, 25, 519-534.		108
102	Latent and Sensible Energy Flux Over Deforested Land Surfaces in the Eastern Amazon and Northern Thailand. Singapore Journal of Tropical Geography, 2000, 21, 107-130.	0.6	30
103	Partitioning total erosion on unpaved roads into splash and hydraulic components: The roles of interstorm surface preparation and dynamic erodibility. Water Resources Research, 2000, 36, 2787-2791.	1.7	42
104	Reassessment of Revegetation Strategies for Kaho'olawe Island, Hawai'i. Journal of Range Management, 2000, 53, 106.	0.3	14
105	Dry-season radiation balance of land covers replacing forest in northern Thailand. Agricultural and Forest Meteorology, 1999, 95, 53-65.	1.9	34
106	Title is missing!. , 1998, 39, 503-517.		130
107	Vulnerability of Island Tropical Montane Cloud Forests to Climate Change, with Special Reference to East Maui, Hawaii., 1998, , 363-377.		10
108	Observations of Albedo and Radiation Balance over Postforest Land Surfaces in the Eastern Amazon Basin. Journal of Climate, 1997, 10, 919-928.	1.2	45

#	Article	IF	CITATIONS
109	Importance of rural roads as source areas for runoff in mountainous areas of northern Thailand. Journal of Hydrology, 1997, 196, 204-229.	2.3	173
110	Soil-vegetation-atmosphere processes: Simulation and field measurement for deforested sites in northern Thailand. Journal of Geophysical Research, 1996, 101, 25867-25885.	3.3	20
111	Water Balance, Climate Change and Land-use Planning in the Pearl Harbor Basin, Hawai'i. International Journal of Water Resources Development, 1996, 12, 515-530.	1.2	11
112	Uncertainty of Groundwater Vulnerability Assessments for Agricultural Regions in Hawaii: Review. Journal of Environmental Quality, 1996, 25, 475-490.	1.0	68
113	Uncertainty in recharge estimation: impact on groundwater vulnerability assessments for the Pearl Harbor Basin, O'ahu, Hawai'i, U.S.A Journal of Contaminant Hydrology, 1996, 23, 85-112.	1.6	33
114	Photosynthetic gas exchange and temperature-induced damage in seedlings of the tropical alpine species Argyroxiphium sandwicense. Oecologia, 1996, 106, 298-307.	0.9	27
115	Chemical Leaching Near the Waiawa Shaft, Oahu, Hawaii: 2. Modeling Results. Ground Water, 1995, 33, 124-138.	0.7	13
116	Determinants of thermal balance in the Hawaiian giant rosette plant, Argyroxiphium sandwicense. Oecologia, 1994, 98, 412-418.	0.9	25
117	Chemical Leaching Near the Waiawa Shaft, Oahu, Hawaii: 1. Field Experiments and Laboratory Analysis. Ground Water, 1994, 32, 986-996.	0.7	7
118	Linking water-balance simulation and multiobjective programming: land-use plan design in Hawaii. Environment and Planning B: Planning and Design, 1992, 19, 317-336.	1.7	15
119	RADIATION CLIMATOLOGY THROUGH THE TRADE-WIND INVERSION ON THE LEE SLOPE OF HALEAKALA, MAUI, HAWAII. Physical Geography, 1992, 13, 66-80.	0.6	2
120	An automated recording atmometer: I. calibration and testing. Agricultural and Forest Meteorology, 1992, 62, 109-125.	1.9	2
121	An automated recording atmometer: 2. evaporation measurement on a high elevation transect in Hawaii. Agricultural and Forest Meteorology, 1992, 62, 127-138.	1.9	5
122	Evaporation at high elevations in Hawaii. Journal of Hydrology, 1992, 136, 219-235.	2.3	17
123	Drought, groundwater management and land use planning: the case of central Oahu, Hawaii. Applied Geography, 1991, 11, 289-307.	1.7	7
124	Impact of uncertainty in soil, climatic, and chemical information in a pesticide leaching assessment. Journal of Contaminant Hydrology, 1990, 5, 171-194.	1.6	59
125	Winter evaporation on a mountain slope, Hawaii. Journal of Hydrology, 1990, 112, 257-265.	2.3	13
126	GROUNDWATER CONTAMINATION BY NEMATICIDES: INFLUENCE OF RECHARGE TIMING UNDER PINEAPPLE CROP. Journal of the American Water Resources Association, 1989, 25, 285-294.	1.0	15

#	ARTICLE	IF	CITATIONS
127	AGRICULTURAL DROUGHT ON SOUTH-CENTRAL PACIFIC ISLANDS â^—. Professional Geographer, 1988, 40, 404-415.	1.0	6
128	Risk analysis of seasonal agricultural drought on low pacific islands. Agricultural and Forest Meteorology, 1988, 42, 229-239.	1.9	7
129	DBCP, EDB, and TCP Contamination of Ground Water in Hawaii. Ground Water, 1987, 25, 693-702.	0.7	46
130	Hawaiâ€~i and U.S. Affiliated Pacific Islands. Climate Change Impacts in the United States: The Third National Climate Assessment. SSRN Electronic Journal, 0, , .	0.4	0