
Xia Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5649116/publications.pdf Version: 2024-02-01

Χιλ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	In-Situ Hydrothermal Synthesis of SnS2/SnO2/rGO Nanocomposites with Enhanced Photogenerated Electron Transfer for Photoreduction of CO2 to CH4. Catalysis Letters, 2023, 153, 1284-1293.	2.6	2
2	Conversion of 2H MoS2 to 1ÂT MoS2 via lithium ion doping: Effective removal of elemental mercury. Chemical Engineering Journal, 2022, 428, 131014.	12.7	29
3	Enhanced photocatalytic activity on elemental mercury over pink BiOIO3 nanosheets with abundant oxygen vacancies. Korean Journal of Chemical Engineering, 2022, 39, 343-352.	2.7	5
4	Dual modification of BiOIO3 via doping iodine and fabricating heterojunction with basic bismuth salt: Facile synthesis, superior performance for degradation of multiple refractory organics. Journal of Environmental Chemical Engineering, 2022, 10, 107068.	6.7	4
5	ZnS-modified carbon nitride nanosheet with enhanced performance of elemental Hg removal: An experimental and density functional theory study. Korean Journal of Chemical Engineering, 2022, 39, 1641-1650.	2.7	8
6	Graphitic Carbon Nitride for Gaseous Mercury Emission Control: A Review. Energy & Fuels, 2022, 36, 4297-4313.	5.1	15
7	3D/0D Cu ₃ SnS ₄ /CeO ₂ Heterojunction Photocatalyst with Dual Redox Pairs Synergistically Promotes the Photocatalytic Reduction of CO ₂ . Energy & Fuels, 2022, 36, 7763-7774.	5.1	7
8	Surface defect engineering of Fe-doped Bi7O9I3 microflowers for ameliorating charge-carrier separation and molecular oxygen activation. Applied Catalysis B: Environmental, 2021, 284, 119727.	20.2	104
9	Self-grown oxygen vacancies-rich CeO2/BiOBr Z-scheme heterojunction decorated with rGO as charge transfer channel for enhanced photocatalytic oxidation of elemental mercury. Journal of Colloid and Interface Science, 2021, 587, 402-416.	9.4	120
10	The effect of different morphology of fluoride-mediated TiO2 based on Ostwald ripening on photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125702.	4.7	13
11	Fabrication of BiOI nanosheets with exposed (001) and (110) facets with different methods for photocatalytic oxidation elemental mercury. Colloids and Interface Science Communications, 2021, 40, 100357.	4.1	22
12	Experimental Study on the Photocatalytic Reduction of CO ₂ by Fe ₂ O ₃ /BiOIO ₃ Composite Photocatalyst. IOP Conference Series: Earth and Environmental Science, 2021, 770, 012033.	0.3	1
13	Insights into the Mechanism of Elemental Mercury Adsorption on Graphitic Carbon Nitride: A Density Functional Theory Study. Energy & Fuels, 2021, 35, 9322-9331.	5.1	21
14	Influence of different solvents on the performance of bismuth-based photocatalyst for mercury removal. Chemical Physics Letters, 2021, 773, 138598.	2.6	1
15	Effect of (La, Ce, Eu) doping on structural, and optical properties of BiOI nanosheets: As a model of photocatalytic activity in heavy metal removal under visible light. Materials Chemistry and Physics, 2021, 267, 124691.	4.0	16
16	Rational design bionic flower-like BiOBr0.510.5/WS2 Z-scheme heterojunction for efficient oxidation of Hg0: Synergistic effect of facets exposed and intrinsic defects. Chemical Engineering Journal, 2021, 416, 129537.	12.7	18
17	Constructing 3D Bi/Bi4O5I2 microspheres with rich oxygen vacancies by one-pot solvothermal method for enhancing photocatalytic activity on mercury removal. Chemical Engineering Journal, 2021, 425, 131599.	12.7	93
18	Influence of BiOIO3 morphology on the photocatalytic efficiency of Z-scheme BiOIO3/g-C3N4 heterojunctioned composite for HgO removal. Journal of Colloid and Interface Science, 2020, 558, 123-136.	9.4	89

Xia Zhang

#	Article	IF	CITATIONS
19	Photocatalytic oxidation removal of elemental mercury from flue gas.ÂA review. Environmental Chemistry Letters, 2020, 18, 417-431.	16.2	40
20	Constructing 2D BiOIO3/MoS2 Z-scheme heterojunction wrapped by C500 as charge carriers transfer channel: Enhanced photocatalytic activity on gas-phase heavy metal oxidation. Journal of Colloid and Interface Science, 2020, 562, 429-443.	9.4	62
21	Hierarchical porous g-C ₃ N ₄ /Bi ₅ O ₇ I photocatalyst for high gaseous mercury removal. IOP Conference Series: Earth and Environmental Science, 2020, 512, 012045.	0.3	2
22	Facet-dependent flower-like BiOBr with exposed the (0 0 1) and (0 1 0) facets for enhanced charge carrier transfer and photocatalytic oxidation activity. Chemical Physics Letters, 2020, 760, 138010.	2.6	18
23	Fabrication of bionic flower-like g-C3N4/Bi4O5I2 photocatalyst with enhanced photocatalytic performance. Chemical Physics Letters, 2020, 751, 137533.	2.6	7
24	Solvent-exfoliation of transition-metal dichalcogenide MoS2 to provide more active sites for enhancing photocatalytic performance of BiOIO3/g-C3N4 photocatalyst. Applied Surface Science, 2019, 481, 838-851.	6.1	55
25	Constructing interfacial contact for enhanced photocatalytic activity through BiOIO3/g-C3N4 nanoflake heterostructure. Catalysis Communications, 2018, 109, 55-59.	3.3	23
26	Synergistic effect of surface defect and interface heterostructure on TiO2/BiOIO3 photocatalytic oxide gas-phase mercury. Materials Research Bulletin, 2018, 103, 247-258.	5.2	41
27	Controlling dominantly reactive (010) facets and impurity level by in-situ reduction of BiOIO3 for enhancing photocatalytic activity. Applied Catalysis B: Environmental, 2018, 232, 135-145.	20.2	95
28	Fabrication of Carbon-Modified BiOI/BiOIO3 Heterostructures With Oxygen Vacancies for Enhancing Photocatalytic Activity. Catalysis Letters, 2018, 148, 3349-3362.	2.6	21
29	Fabrication of BiVO4/BiOIO3 Heterojunctions via Hydrothermal Method for Photocatalytic Activity Under Visible Light. Catalysis Letters, 2018, 148, 3193-3204.	2.6	18
30	Fabrication of BiOIO3 with induced oxygen vacancies for efficient separation of the electron-hole pairs. Applied Catalysis B: Environmental, 2017, 218, 80-90.	20.2	150
31	Hydrothermal synthesis of carbon spheres – BiOI/BiOIO3 heterojunctions for photocatalytic removal of gaseous HgO under visible light. Chemical Engineering Journal, 2016, 304, 533-543.	12.7	95
32	Fabrication of BiOIO 3 nanosheets with remarkable photocatalytic oxidation removal for gaseous elemental mercury. Chemical Engineering Journal, 2016, 285, 11-19.	12.7	91