
Jacques Lefebvre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/56488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct printing of functional 3D objects using polymerization-induced phase separation. Nature Communications, 2021, 12, 55.	12.8	38
2	Phenanthroline Additives for Enhanced Semiconducting Carbon Nanotube Dispersion Stability and Transistor Performance. ACS Applied Nano Materials, 2020, 3, 12314-12324.	5.0	16
3	Enrichment of Semiconducting Single-Walled Carbon Nanotubes with Indigo-Fluorene-Based Copolymers and Their Use in Printed Thin-Film Transistors and Carbon Dioxide Gas Sensors. ACS Sensors, 2020, 5, 2136-2145.	7.8	30
4	Fully R2Râ€Printed Carbonâ€Nanotubeâ€Based Limitless Length of Flexible Activeâ€Matrix for Electrophoretic Display Application. Advanced Electronic Materials, 2020, 6, 1901431.	5.1	49
5	Decoration of suspended single-walled carbon nanotubes with soft-landed size-selected metal nanoparticles. Thin Solid Films, 2020, 699, 137907.	1.8	1
6	(Invited) Challenges in Quantifying the Purity of Semiconducting Single-Walled Carbon Nanotubes. ECS Meeting Abstracts, 2020, MA2020-01, 756-756.	0.0	0
7	Polymer Encapsulants for Threshold Voltage Control in Carbon Nanotube Transistors. ACS Applied Materials & Interfaces, 2019, 11, 36027-36034.	8.0	7
8	Carbon Nanotube Transistors as Gas Sensors: Response Differentiation Using Polymer Gate Dielectrics. ACS Applied Polymer Materials, 2019, 1, 3269-3278.	4.4	8
9	Decomposable <i>s</i> â€Tetrazine Copolymer Enables Singleâ€Walled Carbon Nanotube Thin Film Transistors and Sensors with Improved Sensitivity. Advanced Functional Materials, 2018, 28, 1705568.	14.9	36
10	Sorting of Semiconducting Single-Walled Carbon Nanotubes in Polar Solvents with an Amphiphilic Conjugated Polymer Provides General Guidelines for Enrichment. ACS Nano, 2018, 12, 1910-1919.	14.6	50
11	Dopant-Modulated Conjugated Polymer Enrichment of Semiconducting SWCNTs. ACS Omega, 2018, 3, 3413-3419.	3.5	9
12	Dielectrics & Electrostatics: Their Effect on Carbon Nanotube Network Field-Effect Transistors and Gas Sensors. ECS Meeting Abstracts, 2018, , .	0.0	0
13	Cyanoethylated pullulan as a high-k solution processable polymer gate dielectric for SWCNT TFTs. Organic Electronics, 2017, 42, 329-336.	2.6	16
14	High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics. Accounts of Chemical Research, 2017, 50, 2479-2486.	15.6	82
15	Real Time Hyperspectroscopy for Dynamical Study of Carbon Nanotubes. ACS Nano, 2016, 10, 9602-9607.	14.6	12
16	Mechanistic Consideration of pH Effect on the Enrichment of Semiconducting SWCNTs by Conjugated Polymer Extraction. Journal of Physical Chemistry C, 2016, 120, 21946-21954.	3.1	20
17	Surface effects on network formation of conjugated polymer wrapped semiconducting single walled carbon nanotubes and thin film transistor performance. Organic Electronics, 2015, 26, 15-19.	2.6	38
18	Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors. Nano Research, 2015, 8, 2179-2187.	10.4	50

JACQUES LEFEBVRE

#	Article	IF	CITATIONS
19	A hybrid enrichment process combining conjugated polymer extraction and silica gel adsorption for high purity semiconducting single-walled carbon nanotubes (SWCNT). Nanoscale, 2015, 7, 15741-15747.	5.6	47
20	Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale, 2014, 6, 2328.	5.6	154
21	Type- and Species-Selective Air Etching of Single-Walled Carbon Nanotubes Tracked with in Situ Raman Spectroscopy. ACS Nano, 2013, 7, 6507-6521.	14.6	22
22	Thermodynamic and Energetic Effects on the Diameter and Defect Density in Single-Walled Carbon Nanotube Synthesis. Journal of Physical Chemistry C, 2013, 117, 3527-3536.	3.1	17
23	Photoinduced Band Gap Shift and Deep Levels in Luminescent Carbon Nanotubes. ACS Nano, 2012, 6, 1702-1714.	14.6	17
24	Polarized light microscopy and spectroscopy of individual single-walled carbon nanotubes. Nano Research, 2011, 4, 788-794.	10.4	26
25	Visible iridescence from self-assembled periodic rippling in vertically aligned carbon nanotube forests. Applied Physics Letters, 2010, 97, 101901.	3.3	6
26	Phases of Carbon Nanotube Growth and Population Evolution from in Situ Raman Spectroscopy during Chemical Vapor Deposition. Journal of Physical Chemistry C, 2010, 114, 11018-11025.	3.1	32
27	The dynamics of the nucleation, growth and termination of single-walled carbon nanotubes from in situ Raman spectroscopy during chemical vapor deposition. Nano Research, 2009, 2, 783-792.	10.4	19
28	Photoluminescence and Förster Resonance Energy Transfer in Elemental Bundles of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 7536-7540.	3.1	72
29	Excitonic imaging spectroscopy of singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2247-2250.	1.5	1
30	Excited Excitonic States in Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 1890-1895.	9.1	72
31	Charge contrast imaging of suspended nanotubes by scanning electron microscopy. Nanotechnology, 2008, 19, 335202.	2.6	20
32	Photoluminescence Imaging of Suspended Single-Walled Carbon Nanotubes. Nano Letters, 2006, 6, 1603-1608.	9.1	197
33	InAs/InP quantum-dot pillar microcavities using SiO2/Ta2O5 Bragg reflectors with emission around 1.55â€,μm. Applied Physics Letters, 2004, 84, 3235-3237.	3.3	20
34	Study of self-assembled InAs quantum dots on InP nano-templates by low voltage scanning electron microscopy cathodoluminescence. Microscopy and Microanalysis, 2002, 8, 712-713.	0.4	0