Frieder W Scheller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5648747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research and development in biosensors. Current Opinion in Biotechnology, 2001, 12, 35-40.	6.6	221
2	Zeptomole-Detecting Biosensor for Alkaline Phosphatase in an Electrochemical Immunoassay for 2,4-Dichlorophenoxyacetic acid. Analytical Chemistry, 1996, 68, 2453-2458.	6.5	195
3	Cytochrome P450 biosensors—a review. Biosensors and Bioelectronics, 2005, 20, 2408-2423.	10.1	188
4	Direct Electron Transfer of Cytochrome P450 2B4 at Electrodes Modified with Nonionic Detergent and Colloidal Clay Nanoparticles. Analytical Chemistry, 2004, 76, 6046-6052.	6.5	169
5	Thirty years of haemoglobin electrochemistry. Advances in Colloid and Interface Science, 2005, 116, 111-120.	14.7	156
6	A Superoxide Sensor Based on a Multilayer CytochromecElectrode. Analytical Chemistry, 2004, 76, 4665-4671.	6.5	150
7	Electrosynthesized molecularly imprinted polymers for protein recognition. TrAC - Trends in Analytical Chemistry, 2016, 79, 179-190.	11.4	138
8	Electroactive Cytochromec Multilayers within a Polyelectrolyte Assembly. Angewandte Chemie - International Edition, 2004, 43, 4357-4360.	13.8	124
9	Biosensors: trends and commercialization. Biosensors, 1985, 1, 135-160.	1.7	116
10	Protein Rebinding to a Surface onfined Imprint. Advanced Functional Materials, 2012, 22, 5231-5237.	14.9	112
11	Clay-Bridged Electron Transfer between Cytochrome P450cam and Electrode. Biochemical and Biophysical Research Communications, 2000, 268, 740-744.	2.1	82
12	Superoxide sensor based on hemin modified electrode. Sensors and Actuators B: Chemical, 2000, 70, 115-120.	7.8	80
13	Ferroceneboronic acid-based amperometric biosensor for glycated hemoglobin. Sensors and Actuators B: Chemical, 2006, 113, 623-629.	7.8	73
14	Electrosynthesized molecularly imprinted polyscopoletin nanofilms for human serum albumin detection. Analytica Chimica Acta, 2017, 977, 1-9.	5.4	73
15	New enzyme sensors for morphine and codeine based on morphine dehydrogenase and laccase. Fresenius' Journal of Analytical Chemistry, 1999, 364, 179-183.	1.5	67
16	Molecularly imprinted polymer-based electrochemical sensors for biopolymers. Current Opinion in Electrochemistry, 2019, 14, 53-59.	4.8	67
17	Enhancing biosensor performance using multienzyme systems. Trends in Biotechnology, 1993, 11, 255-262.	9.3	62
18	Bioelectrocatalysis by redox enzymes at modified electrodes. Reviews in Molecular Biotechnology, 2002, 82, 411-424.	2.8	62

FRIEDER W SCHELLER

#	Article	IF	CITATIONS
19	Hybrid Material for Protein Sensing Based on Electrosynthesized MIP on a Mannose Terminated Selfâ€Assembled Monolayer. Advanced Functional Materials, 2014, 24, 2233-2239.	14.9	61
20	A Bifunctional Molecularly Imprinted Polymer (MIP): Analysis of Binding and Catalysis by a Thermistor. Angewandte Chemie - International Edition, 2006, 45, 6986-6990.	13.8	58
21	Electrochemical displacement sensor based on ferrocene boronic acid tracer and immobilized glycan for saccharide binding proteins and E. coli. Biosensors and Bioelectronics, 2014, 58, 1-8.	10.1	58
22	Microelectrospotting as a new method for electrosynthesis of surface-imprinted polymer microarrays for protein recognition. Biosensors and Bioelectronics, 2015, 73, 123-129.	10.1	53
23	MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing. Biosensors, 2016, 6, 35.	4.7	53
24	How Reliable Is the Electrochemical Readout of MIP Sensors?. Sensors, 2020, 20, 2677.	3.8	52
25	Vectorially Imprinted Hybrid Nanofilm for Acetylcholinesterase Recognition. Advanced Functional Materials, 2015, 25, 5178-5183.	14.9	51
26	A self-assembled cytochrome c/xanthine oxidase multilayer arrangement on gold. Electrochimica Acta, 2007, 53, 1107-1113.	5.2	47
27	The First Electrochemical MIP Sensor for Tamoxifen. Sensors, 2014, 14, 7647-7654.	3.8	47
28	Development of fructosyl valine binding polymers by covalent imprinting. Biosensors and Bioelectronics, 2007, 22, 3318-3325.	10.1	44
29	Electrocatalytically functional multilayer assembly of sulfite oxidase and cytochrome c. Soft Matter, 2008, 4, 972.	2.7	43
30	Thermometric MIP sensor for fructosyl valine. Biosensors and Bioelectronics, 2008, 23, 1195-1199.	10.1	42
31	Modulation of direct electron transfer of cytochrome c by use of a molecularly imprinted thin film. Analytical and Bioanalytical Chemistry, 2013, 405, 6437-6444.	3.7	41
32	Simple and robust: The claims of protein sensing by molecularly imprinted polymers. Sensors and Actuators B: Chemical, 2021, 330, 129369.	7.8	41
33	Electrosynthesized MIPs for transferrin: Plastibodies or nano-filters?. Biosensors and Bioelectronics, 2018, 105, 29-35.	10.1	38
34	Molecularly Imprinted Electropolymer for a Hexameric Heme Protein with Direct Electron Transfer and Peroxide Electrocatalysis. Sensors, 2016, 16, 272.	3.8	37
35	Integrated Approaches Toward Highâ€Affinity Artificial Protein Binders Obtained via Computationally Simulated Epitopes for Protein Recognition. Advanced Functional Materials, 2019, 29, 1807332.	14.9	36
36	Electrochemical MIP Sensor for Butyrylcholinesterase. Polymers, 2019, 11, 1970.	4.5	36

FRIEDER W SCHELLER

#	Article	IF	CITATIONS
37	Development of molecularly imprinted polymers for the binding of nitrofurantoin. Biosensors and Bioelectronics, 2009, 25, 82-87.	10.1	35
38	Thermometric Sensing of Nitrofurantoin by Noncovalently Imprinted Polymers Containing Two Complementary Functional Monomers. Analytical Chemistry, 2011, 83, 7704-7711.	6.5	35
39	Au-Pt nanoparticles based molecularly imprinted nanosensor for electrochemical detection of the lipopeptide antibiotic drug Daptomycin. Sensors and Actuators B: Chemical, 2020, 320, 128285.	7.8	35
40	Spectroelectrochemistry of cytochrome P450cam. Biochemical and Biophysical Research Communications, 2004, 314, 810-816.	2.1	31
41	Coupling Biocatalysis with Molecular Imprinting in a Biomimetic Sensor. Angewandte Chemie - International Edition, 2013, 52, 11521-11525.	13.8	30
42	Electrochemical MIP-Sensors for Drugs. Current Medicinal Chemistry, 2018, 25, 4007-4019.	2.4	29
43	Peptide epitope-imprinted polymer microarrays for selective protein recognition. Application for SARS-CoV-2 RBD protein. Chemical Science, 2022, 13, 1263-1269.	7.4	28
44	COUPLING OF IMMUNOASSAYS WITH ENZYMATIC RECYCLING ELECTRODES. Analytical Letters, 2001, 34, 1233-1245.	1.8	27
45	Sensors based on cytochrome P450 and CYP mimicking systems. Electrochimica Acta, 2013, 110, 63-72.	5.2	27
46	Size Exclusion Redox-Labeled Immunoassay (SERI): A New Format for Homogeneous Amperometric Creatinine Determination. Electroanalysis, 2000, 12, 1318-1321.	2.9	25
47	An Esterolytic Imprinted Polymer Prepared via a Silica-Supported Transition State Analogue. Chemistry of Materials, 2004, 16, 2745-2749.	6.7	25
48	Molecular LEGO by domain-imprinting of cytochrome P450 BM3. Colloids and Surfaces B: Biointerfaces, 2018, 164, 240-246.	5.0	24
49	Quinoprotein glucose dehydrogenase modified thick-film electrodes for the amperometric detection of phenolic compounds in flow injection analysis. Fresenius' Journal of Analytical Chemistry, 2001, 369, 145-152.	1.5	23
50	High sensitive competitive immunodetection of 2,4-dichlorophenoxyacetic acid using enzymatic amplification with electrochemical detection. Analytical and Bioanalytical Chemistry, 1996, 354, 861-865.	3.7	22
51	A novel multienzyme electrode for the determination of citrate. Journal of Chemical Technology and Biotechnology, 1995, 63, 337-344.	3.2	20
52	Cascade-like exponential substrate amplification in enzyme sensors. Biosensors and Bioelectronics, 1995, 10, 169-180.	10.1	19
53	Direct electrocatalytic determination of dissolved peroxidases. Analytica Chimica Acta, 1996, 329, 231-237.	5.4	19
54	Peroxygenase based sensor for aromatic compounds. Biosensors and Bioelectronics, 2010, 26, 1432-1436.	10.1	16

FRIEDER W SCHELLER

#	Article	IF	CITATIONS
55	Bioelectrocatalytic properties of Agrocybe aegerita peroxygenase. Electrochimica Acta, 2010, 55, 7809-7813.	5.2	15
56	Enzyme electrode for aromatic compounds exploiting the catalytic activities of microperoxidase-11. Biosensors and Bioelectronics, 2011, 30, 320-323.	10.1	15
57	Cytochrome câ€Derived Hybrid Systems Based on Moleculary Imprinted Polymers. Electroanalysis, 2015, 27, 573-586.	2.9	15
58	The aromatic peroxygenase from Marasmius rutola—a new enzyme for biosensor applications. Analytical and Bioanalytical Chemistry, 2012, 402, 405-412.	3.7	14
59	Surfaceâ€Tuned Electron Transfer and Electrocatalysis of Hexameric Tyrosineâ€Coordinated Heme Protein. Chemistry - A European Journal, 2015, 21, 7596-7602.	3.3	14
60	MIPâ€esterase/Tyrosinase Combinations for Paracetamol and Phenacetin. Electroanalysis, 2016, 28, 2222-2227.	2.9	14
61	"Out of Pocket―Protein Binding—A Dilemma of Epitope Imprinted Polymers Revealed for Human Hemoglobin. Chemosensors, 2021, 9, 128.	3.6	13
62	Peroxide-Dependent Analyte Conversion by the Heme Prosthetic Group, the Heme Peptide "Microperoxidase-11―and Cytochrome c on Chitosan Capped Gold Nanoparticles Modified Electrodes. Biosensors, 2012, 2, 189-204.	4.7	12
63	Third Generation ATP Sensor with Enzymatic Analyte Recycling. Electroanalysis, 2014, 26, 2043-2048.	2.9	12
64	Enzymes as Tools in MIP-Sensors. Chemosensors, 2017, 5, 11.	3.6	12
65	Preparation and characterization of novel molecularly imprinted polymers based on thiourea receptors for nitrocompounds recognition. Talanta, 2011, 84, 274-279.	5.5	11
66	Future of Biosensors: A Personal View. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 1-28.	1.1	11
67	Insights in electrosynthesis, target binding, and stability of peptide-imprinted polymer nanofilms. Electrochimica Acta, 2021, 381, 138236.	5.2	11
68	Direct electron transfer of Agrocybe aegerita peroxygenase at electrodes modified with chitosan-capped Au nanoparticles and its bioelectrocatalysis to aniline. Sensors and Actuators B: Chemical, 2011, 160, 1419-1426.	7.8	9
69	Can peroxygenase and microperoxidase substitute cytochrome P450 in biosensors. Bioanalytical Reviews, 2011, 3, 67-94.	0.2	9
70	Carboxylated or Aminated Polyaniline—Multiwalled Carbon Nanotubes Nanohybrids for Immobilization of Cellobiose Dehydrogenase on Gold Electrodes. Biosensors, 2014, 4, 370-386.	4.7	9
71	Characterization of Binding of Cholinesterases to Surface Immobilized Ligands. Analytical Letters, 2006, 39, 1491-1502.	1.8	8
72	Bioâ€Electrosynthesis of Vectorially Imprinted Polymer Nanofilms for Cytochrome P450cam. ChemElectroChem, 2019, 6, 1818-1823.	3.4	8

Frieder W Scheller

#	Article	IF	CITATIONS
73	Enzyme Sensors for Subnanomolar Concentrations. ACS Symposium Series, 1996, , 70-81.	0.5	7
74	Electrochemical Determination of Human Hemoglobin by Using Ferrocene Carboxylic Acid Modified Carbon Powder Microelectrode. Analytical Letters, 2003, 36, 2049-2059.	1.8	7
75	Characterization of the enhanced peroxidatic activity of amyloid β peptide–hemin complexes towards neurotransmitters. Analytical and Bioanalytical Chemistry, 2014, 406, 3359-3364.	3.7	7
76	Enhancement of the Electrocatalytic Activity of Thienylâ€Substituted Iron Porphyrin Electropolymers by a Hangman Effect. ChemCatChem, 2018, 10, 4353-4361.	3.7	7
77	Bioelectrocatalysis by Microperoxidaseâ€11 in a Multilayer Architecture of Chitosan Embedded Gold Nanoparticles. Electroanalysis, 2011, 23, 611-618.	2.9	6
78	The Electrically Wired Molybdenum Domain of Human Sulfite Oxidase is Bioelectrocatalytically Active. European Journal of Inorganic Chemistry, 2015, 2015, 3526-3531.	2.0	5
79	Label-Free MIP Sensors for Protein Biomarkers. Springer Series on Chemical Sensors and Biosensors, 2017, , 291-321.	0.5	4
80	Catalytically Active MIP Architectures. , 2016, , 19-34.		3
81	Molecularly Imprinted Polymer-Based Nanosensors for Pharmaceutical Analysis. , 2019, , 231-271.		3
82	New Recognition Elements in Biosensing. Annals of the New York Academy of Sciences, 1998, 864, 37-45.	3.8	2
83	Quantum dot-based electrochemical molecularly imprinted polymer sensors: potentials and challenges. , 2021, , 121-153.		2
84	Aptamers: Hybrids between Nature and Technology. , 0, , 87-99.		1
85	Focus on bioanalysis. Analytical and Bioanalytical Chemistry, 2010, 398, 2337-2339.	3.7	1
86	Molecular Imprinting Technique for Biosensing and Diagnostics. Springer Series on Chemical Sensors and Biosensors, 2012, , 143-170.	0.5	1
87	Direct Electron Transfer and Bioelectrocatalysis by a Hexameric, Heme Protein at Nanostructured Electrodes. Electroanalysis, 2015, 27, 2262-2267.	2.9	1
88	Electrochemical Approaches for Molecular Surface Imprinting of Polymers Toward Fully Synthetic Receptors for Selective Recognition of Proteins. , 2015, , 347-356.		1
89	Electrochemical Investigation of Cellobiose Oxidation by Cellobiose Oxidase in Presence of Cytochrome c as Mediator. Biochemical Society Transactions, 2000, 28, A20-A20.	3.4	0
90	Tribute to Günter Gauglitz. Analytical and Bioanalytical Chemistry, 2009, 393, 1555-1556.	3.7	0

#	Article	IF	CITATIONS
91	Biomimetic Sensors: Vectorially Imprinted Hybrid Nanofilm for Acetylcholinesterase Recognition (Adv. Funct. Mater. 32/2015). Advanced Functional Materials, 2015, 25, 5078-5078.	14.9	0
92	A tribute to Isao Karube (1942–2020) and his influence on sensor science. Analytical and Bioanalytical Chemistry, 2020, 412, 7709-7711.	3.7	0
93	Can peroxygenase and microperoxidase substitute cytochrome P450 in biosensors. , 2013, , 197-224.		0