Luigi Grassia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5648600/publications.pdf Version: 2024-02-01

LUICI CRASSIA

#	Article	IF	CITATIONS
1	Deconvolution of the segmental and chain modes in amorphous polymers: Do the short-chain modes affect the bulk relaxation?. Polymer, 2021, 225, 123801.	1.8	1
2	Mobility of Pressure-Densified and Pressure-Expanded Polystyrene Glasses: Dilatometry and a Test of KAHR Model. Macromolecules, 2021, 54, 8352-8364.	2.2	4
3	Damage Detection in Composites By Artificial Neural Networks Trained By Using in Situ Distributed Strains. Applied Composite Materials, 2020, 27, 657-671.	1.3	32
4	Strain based method for monitoring the health state of composite structures. Composites Part B: Engineering, 2019, 176, 107253.	5.9	33
5	Comparative Study of Phenomenological Residual Strength Models for Composite Materials Subjected to Fatigue: Predictions at Constant Amplitude (CA) Loading. Materials, 2019, 12, 3398.	1.3	11
6	Nonisothermal Crystallization Kinetics of an Ethyleneâ€Vinylâ€Acetate: I Calorimetry Versus Rheology. Polymer Engineering and Science, 2019, 59, 2557-2563.	1.5	5
7	Principal Features of Fatigue and Residual Strength of Composite Materials Subjected to Constant Amplitude (CA) Loading. Materials, 2019, 12, 2586.	1.3	12
8	Fatigue of Composite Materials Subjected to Variable Loadings. Journal of Materials Engineering and Performance, 2019, 28, 6538-6543.	1.2	10
9	A method to predict the fatigue life and the residual strength of composite materials subjected to variable amplitude (VA) loadings. Composite Structures, 2019, 228, 111338.	3.1	25
10	Nonâ€Isothermal Crystallization Kinetics of an Ethyleneâ€Vinylâ€Acetate. II. Timeâ€Temperatureâ€Crystallinityâ€Superposition. Polymer Engineering and Science, 2019, 59, 2550-2556.	1.5	5
11	Complete Set of Enthalpy Recovery Data Using Flash DSC: Experiment and Modeling. Macromolecules, 2018, 51, 1549-1558.	2.2	31
12	Phenomenological approach to the study of hierarchical damage mechanisms in composite materials subjected to fatigue loadings. Composite Structures, 2017, 175, 1-6.	3.1	33
13	Rheology and mechanics of polyether(ether)ketone – Polyetherimide blends for composites in aeronautics. AIP Conference Proceedings, 2016, , .	0.3	8
14	Constitutive law describing the strength degradation kinetics of fibre-reinforced composites subjected to constant amplitude cyclic loading. Mechanics of Time-Dependent Materials, 2016, 20, 1-12.	2.3	33
15	Structural recovery of a single polystyrene thin film using nanocalorimetry to extend the aging time and temperature range. Thermochimica Acta, 2015, 603, 135-141.	1.2	60
16	Modeling the residual strength of carbon fiber reinforced composites subjected to cyclic loading. International Journal of Fatigue, 2015, 78, 31-37.	2.8	58
17	Calculation of the shrinkage-induced residual stress in a viscoelastic dental restorative material. Mechanics of Time-Dependent Materials, 2013, 17, 1-13.	2.3	15
18	Modeling the flexural fatigue behavior of glass-fiber-reinforced thermoplastic matrices. Mechanics of Time-Dependent Materials, 2013, 17, 15-23.	2.3	14

IF # ARTICLE CITATIONS Viscoelasticity of nanobubbleâ€inflated ultrathin polymer films: Justification by the coupling model. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 214-224. Finite element calculation of residual stress in dental restorative material., 2012, , . 20 7 Timescales and properties of PSA (pressure sensitive adhesives)., 2012,,. Modeling volume relaxation of amorphous polymers: Modification of the equation for the relaxation 22 1.8 46 time in the KAHR model. Polymer, 2012, 53, 3613-3620. Bulk and shear rheology of a symmetric threeâ€arm star polystyrene. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1233-1244. 2.4 Modeling of the isobaric and isothermal glass transitions of polystyrene. Journal of Applied Polymer 24 1.3 15 Science, 2011, 122, 3751-3756. Siliconeâ€rubberâ€based tactile sensors for the measurement of normal and tangential components of 1.3 the contact force. Journal of Applied Polymer Science, 2011, 122, 3757-3769. On the viscoelastic Poisson's ratio in amorphous polymers. Journal of Rheology, 2010, 54, 1009-1022. 26 1.343 On the interplay between viscoelasticity and structural relaxation in glassy amorphous polymers. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 724-739. 2.4 The relative placement of linear viscoelastic functions in amorphous glassy polymers. Journal of 28 1.3 29 Rheology, 2009, 53, 339-356. Modelling the yield stress and the Poisson's ratio of glassy polymers. E-Polymers, 2009, 9, . 1.3 Constitutive law describing the phenomenology of subyield mechanically stimulated glasses. Physical 30 0.8 31 Review E, 2006, 74, 021504. Residual Stresses in Amorphous Polymers. Macromolecular Symposia, 2005, 228, 1-16. 0.4

LUIGI GRASSIA