
Daquan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5648162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dextran sulfate-based MMP-2 enzyme-sensitive SR-A receptor targeting nanomicelles for the treatment of rheumatoid arthritis. Drug Delivery, 2022, 29, 454-465.	5.7	25
2	Improvement of pneumonia by curcumin-loaded bionanosystems based on platycodon grandiflorum polysaccharides via calming cytokine storm. International Journal of Biological Macromolecules, 2022, 202, 691-706.	7.5	20
3	Novel ROS-responsive marine biomaterial fucoidan nanocarriers with AIE effect and chemodynamic therapy. International Journal of Biological Macromolecules, 2022, 202, 112-121.	7.5	7
4	A triple enhanced permeable gold nanoraspberry designed for positive feedback interventional therapy. Journal of Controlled Release, 2022, 345, 120-137.	9.9	6
5	Novel polysaccharide building hybrid nanoparticles: remodelling TAMs to target ERα-positive breast cancer. Journal of Drug Targeting, 2022, 30, 450-462.	4.4	6
6	Hypoxia responsive nano-drug delivery system based on angelica polysaccharide for liver cancer therapy. Drug Delivery, 2022, 29, 138-148.	5.7	42
7	N-acetylneuraminic acid and chondroitin sulfate modified nanomicelles with ROS-sensitive H2S donor via targeting E-selectin receptor and CD44 receptor for the efficient therapy of atherosclerosis. International Journal of Biological Macromolecules, 2022, 211, 259-270.	7.5	14
8	Complex polymeric nanomicelles co-delivering doxorubicin and dimethoxycurcumin for cancer chemotherapy. Drug Delivery, 2022, 29, 1523-1535.	5.7	8
9	Construction of bionanoparticles based on Angelica polysaccharides for the treatment of stroke. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 44, 102570.	3.3	4
10	Novel multifunctional bionanoparticles modified with sialic acid for stroke treatment. International Journal of Biological Macromolecules, 2022, 214, 278-289.	7.5	4
11	Novel Chinese Angelica Polysaccharide Biomimetic Nanomedicine to Curcumin Delivery for Hepatocellular Carcinoma Treatment and Immunomodulatory Effect. Phytomedicine, 2021, 80, 153356.	5.3	38
12	A DM1-doped porous gold nanoshell system for NIR accelerated redox-responsive release and triple modal imaging guided photothermal synergistic chemotherapy. Journal of Nanobiotechnology, 2021, 19, 77.	9.1	21
13	Nanocarrier-based Drug Delivery System for Cancer Therapeutics: A Review of the Last Decade. Current Medicinal Chemistry, 2021, 28, 3753-3772.	2.4	24
14	Anti-inflammatory effects of three withanolides isolated from Physalis angulata L. in LPS-activated RAW 264.7 cells through blocking NF-κB signaling pathway. Journal of Ethnopharmacology, 2021, 276, 114186.	4.1	9
15	Emerging Antibacterial Strategies with Application of Targeting Drug Delivery System and Combined Treatment. International Journal of Nanomedicine, 2021, Volume 16, 6141-6156.	6.7	10
16	Pharmacological Effects of Polyphenol Phytochemicals on the JAK-STAT Signaling Pathway. Frontiers in Pharmacology, 2021, 12, 716672.	3.5	31
17	Dose escalation biodistribution, positron emission tomography/computed tomography imaging and dosimetry of a highly specific radionuclide-labeled non-blocking nanobody. EJNMMI Research, 2021, 11, 113.	2.5	6
18	In vitro anti-inflammatory activities of naucleoffieine H as a natural alkaloid from <i>Nauclea officinalis</i> Pierrc ex Pitard, through inhibition of the iNOS pathway in LPS-activated RAW 264.7 macrophages. Natural Product Research, 2020, 34, 2694-2697.	1.8	11

#	Article	IF	CITATIONS
19	Co-delivery of Poria cocos extract and doxorubicin as an â€~all-in-one' nanocarrier to combat breast cancer multidrug resistance during chemotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102095.	3.3	31
20	Novel dual ROS-sensitive and CD44 receptor targeting nanomicelles based on oligomeric hyaluronic acid for the efficient therapy of atherosclerosis. Carbohydrate Polymers, 2020, 232, 115787.	10.2	42
21	Curcumin, as a pleiotropic agent, improves doxorubicin-induced nephrotic syndrome in rats. Journal of Ethnopharmacology, 2020, 250, 112502.	4.1	21
22	Nd ³⁺ ‣ensitized Upconversion Metal–Organic Frameworks for Mitochondriaâ€Targeted Amplified Photodynamic Therapy. Angewandte Chemie, 2020, 132, 2656-2660.	2.0	10
23	Nd ³⁺ ‣ensitized Upconversion Metal–Organic Frameworks for Mitochondriaâ€Targeted Amplified Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 2634-2638.	13.8	175
24	Optimization, characterization and evaluation of ZnO/polyvinylidene fluoride nanocomposites for orthopedic applications: improved antibacterial ability and promoted osteoblast growth. Drug Delivery, 2020, 27, 1378-1385.	5.7	16
25	Hydroxysafflor Yellow A: A Systematical Review on Botanical Resources, Physicochemical Properties, Drug Delivery System, Pharmacokinetics, and Pharmacological Effects. Frontiers in Pharmacology, 2020, 11, 579332.	3.5	38
26	Apolipoprotein A-I Mimetic Peptide L-4F Suppresses Granulocytic-Myeloid-Derived Suppressor Cells in Mouse Pancreatic Cancer. Frontiers in Pharmacology, 2020, 11, 576.	3.5	15
27	Nanocontainers for the encapsulation and delivery of antioxidants/nutrients to food. , 2020, , 119-136.		1
28	Preparation and characterization of dissolving hyaluronic acid composite microneedles loaded micelles for delivery of curcumin. Drug Delivery and Translational Research, 2020, 10, 1520-1530.	5.8	45
29	In vitro/vivo evaluation of novel mitochondrial targeting charge-reversal polysaccharide-based antitumor nanoparticle. Carbohydrate Polymers, 2020, 234, 115930.	10.2	48
30	Broad-specific monoclonal antibody based IACs purification coupled UPLC-MS/MS method for T-2 and HT-2 toxin determination in maize and cherry samples. Food and Agricultural Immunology, 2020, 31, 291-302.	1.4	7
31	Preparation and Characterization of Nano-Laponite/PLGA Composite Scaffolds for Urethra Tissue Engineering. Molecular Biotechnology, 2020, 62, 192-199.	2.4	13
32	Highly loaded deoxypodophyllotoxin nano-formulation delivered by methoxy polyethylene glycol-block-poly (D,L-lactide) micelles for efficient cancer therapy. Drug Delivery, 2020, 27, 248-257.	5.7	10
33	Novel nano-pomegranates based on astragalus polysaccharides for targeting ERα-positive breast cancer and multidrug resistance. Drug Delivery, 2020, 27, 607-621.	5.7	25
34	Novel multifunctional triple folic acid, biotin and CD44 targeting pH-sensitive nano-actiniaes for breast cancer combinational therapy. Drug Delivery, 2019, 26, 1002-1016.	5.7	35
35	<p>Dual targeting curcumin loaded alendronate-hyaluronan- octadecanoic acid micelles for improving osteosarcoma therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 6425-6437.	6.7	49
36	Protoporphyrin IX-loaded laminarin nanoparticles for anticancer treatment, their cellular behavior, ROS detection, and animal studies. Nanoscale Research Letters, 2019, 14, 316.	5.7	18

#	Article	IF	CITATIONS
37	Cupredoxin engineered upconversion nanoparticles for ratiometric luminescence sensing of Cu ²⁺ . Nanoscale Advances, 2019, 1, 2580-2585.	4.6	17
38	Real-time monitoring of pH-responsive drug release using a metal-phenolic network-functionalized upconversion nanoconstruct. Nanoscale, 2019, 11, 9201-9206.	5.6	46
39	The in vitro and in vivo anti-inflammatory effect of osthole, the major natural coumarin from Cnidium monnieri (L.) Cuss, via the blocking of the activation of the NF-κB and MAPK/p38 pathways. Phytomedicine, 2019, 58, 152864.	5.3	82
40	Novel Mitochondrial Targeting Multifunctional Surface Charge-Reversal Polymeric Nanoparticles for Cancer Treatment. Journal of Biomedical Nanotechnology, 2019, 15, 2151-2163.	1.1	24
41	<p>Improving The Oral Absorption Of Nintedanib By A Self-Microemulsion Drug Delivery System: Preparation And In Vitro/In Vivo Evaluation</p> . International Journal of Nanomedicine, 2019, Volume 14, 8739-8751.	6.7	32
42	Novel mitochondrial targeting charge-reversal polysaccharide hybrid shell/core nanoparticles for prolonged systemic circulation and antitumor drug delivery. Drug Delivery, 2019, 26, 1125-1139.	5.7	14
43	Development of dual-targeted nano-dandelion based on an oligomeric hyaluronic acid polymer targeting tumor-associated macrophages for combination therapy of non-small cell lung cancer. Drug Delivery, 2019, 26, 1265-1279.	5.7	45
44	Eprinomectin nanoemulgel for transdermal delivery against endoparasites and ectoparasites: preparation, <i>inÂvitro</i> and <i>inÂvivo</i> evaluation. Drug Delivery, 2019, 26, 1104-1114.	5.7	30
45	Identification of β-carboline and canthinone alkaloids as anti-inflammatory agents but with different inhibitory profile on the expression of iNOS and COX-2 in lipopolysaccharide-activated RAW 264.7 macrophages. Journal of Natural Medicines, 2019, 73, 124-130.	2.3	20
46	Novel Reductive Responsive Chrysin-Oligomeric Hyaluronic Acid Nanomaterials to Curcumin Delivery for Cancer Therapy. Science of Advanced Materials, 2019, 11, 1376-1382.	0.7	2
47	Synthesis, Characterization, and Evaluation of Redox-Sensitive Chitosan Oligosaccharide Nanoparticles Coated with Phycocyanin for Drug Delivery. Nanoscale Research Letters, 2019, 14, 389.	5.7	9
48	Dual Targeting pH-Sensitive Co-Delivery Curcumin and β-Elemene Nanomedicine for Breast Cancer Therapy. Science of Advanced Materials, 2019, 11, 1362-1368.	0.7	2
49	Improving the topical ocular pharmacokinetics of lyophilized cyclosporine A-loaded micelles: formulation, <i>in vitro</i> and <i>in vivo</i> studies. Drug Delivery, 2018, 25, 888-899.	5.7	67
50	Imparting Designer Biorecognition Functionality to Metal–Organic Frameworks by a DNAâ€Mediated Surface Engineering Strategy. Small, 2018, 14, e1703812.	10.0	59
51	Synthesis, characterization and <i>in vitro/in vivo</i> evaluation of novel reduction-sensitive hybrid nano-echinus-like nanomedicine. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 659-667.	2.8	14
52	Multifunctional redox-responsive and CD44 receptor targeting polymer-drug nanomedicine based curcumin and alendronate: synthesis, characterization and <i>in vitro</i> evaluation. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 168-177.	2.8	24
53	Co-encapsulation of curcumin and resveratrol into novel nutraceutical hyalurosomes nano-food delivery system based on oligo-hyaluronic acid-curcumin polymer. Carbohydrate Polymers, 2018, 181, 1033-1037.	10.2	81
54	Enhanced <i>In Vitro</i> and <i>In Vivo</i> Anticancer Properties by Using a Nanocarrier for Co-Delivery of Antitumor Polypeptide and Curcumin. Journal of Biomedical Nanotechnology, 2018, 14, 139-149.	1.1	12

#	Article	IF	CITATIONS
55	In Vivo Evaluation of Reduction-Responsive Alendronate-Hyaluronan-Curcumin Polymer-Drug Conjugates for Targeted Therapy of Bone Metastatic Breast Cancer. Molecular Pharmaceutics, 2018, 15, 2764-2769.	4.6	35
56	Synthesis, Characterization and <i> In Vitro</i> Evaluation of Dual pH/Redox Sensitive Marine Laminarin-Based Nanomedicine Carrier Biomaterial for Cancer Therapy. Journal of Biomedical Nanotechnology, 2018, 14, 1568-1577.	1.1	21
57	Novel Dual Mitochondrial and CD44 Receptor Targeting Nanoparticles for Redox Stimuli-Triggered Release. Nanoscale Research Letters, 2018, 13, 32.	5.7	18
58	Dual pH/redox responsive and CD44 receptor targeting hybrid nano-chrysalis based on new oligosaccharides of hyaluronan conjugates. Carbohydrate Polymers, 2017, 157, 1272-1280.	10.2	33
59	Design and evaluation of dual CD44 receptor and folate receptor-targeting double-smart pH-response multifunctional nanocarrier. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	13
60	Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. Journal of Controlled Release, 2017, 261, 113-125.	9.9	170
61	In vivo evaluation of novel ketal-based oligosaccharides of hyaluronan micelles as multifunctional CD44 receptor-targeting and tumor pH-responsive carriers. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1-5.	2.8	5
62	Design of novel multifunctional targeting nano-carrier drug delivery system based on CD44 receptor and tumor microenvironment pH condition. Drug Delivery, 2016, 23, 798-803.	5.7	40
63	Curcumin and its major metabolites inhibit the inflammatory response induced by lipopolysaccharide: Translocation of nuclear factor-κB as potential target. Molecular Medicine Reports, 2015, 11, 3087-3093.	2.4	57
64	Novel CD44 receptor targeting multifunctional "nano-eggs―based on double pH-sensitive nanoparticles for co-delivery of curcumin and paclitaxel to cancer cells and cancer stem cells. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	17
65	In vitro and in vivo evaluation of PEG-conjugated ketal-based chitosan micelles as pH-sensitive carriers. Polymer Chemistry, 2015, 6, 998-1004.	3.9	20
66	Novel pH-Sensitive Biodegradable Polymeric Drug Delivery Systems Based on Ketal Polymers. Journal of Nanoscience and Nanotechnology, 2014, 14, 983-989.	0.9	24
67	Dual pH-responsive and CD44 receptor targeted multifunctional nanoparticles for anticancer intracellular delivery. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	5
68	Acylation of Exenatide by Glycolic Acid and its Anti-Diabetic Activities in db/db Mice. Pharmaceutical Research, 2014, 31, 1958-1966.	3.5	12
69	Novel multicore niosomes based on double pH-sensitive mixed micelles for Ginsenoside Rh2 delivery. Artificial Cells, Nanomedicine and Biotechnology, 2014, 42, 205-209.	2.8	17
70	Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery. Drug Delivery, 2014, 21, 258-264.	5.7	40
71	Stability of exenatide in poly(d,l-lactide-co-glycolide) solutions: A simplified investigation on the peptide degradation by the polymer. European Journal of Pharmaceutical Sciences, 2013, 50, 502-510.	4.0	19
72	Novel chitosan derivative for temperature and ultrasound dual-sensitive liposomal microbubble gel. Carbohydrate Polymers, 2013, 94, 17-23.	10.2	13

#	Article	lF	CITATIONS
73	A Novel Ketal-Based Chitosan as Nano-Vehicles for Potential pH-Sensitive Nanomedicine Delivery. Nanoscience and Nanotechnology Letters, 2013, 5, 1007-1011.	0.4	6
74	OCULAR PHARMACOKINETICS AND BIOEQUIVALENCE STUDY OF AZITHROMYCIN IN RABBITS BY LIQUID CHROMATOGRAPHY–TANDEM MASS SPECTROMETRY (LC–MS/MS) METHOD. Journal of Liquid Chromatography and Related Technologies, 2013, 36, 1931-1946.	1.0	0
75	pH and temperature dual-sensitive liposome gel based on novel cleavable mPEC-Hz-CHEMS polymeric vaginal delivery system. International Journal of Nanomedicine, 2012, 7, 2621.	6.7	50
76	Design, Synthesis and Antiproliferative Activities of Diaryl Thiourea Derivatives as Anticancer Agents. Chinese Journal of Chemistry, 2012, 30, 2423-2430.	4.9	6
77	Effects of a novel pH-sensitive liposome with cleavable esterase-catalyzed and pH-responsive double smart mPEG lipid derivative on ABC phenomenon. International Journal of Nanomedicine, 2011, 6, 2053.	6.7	70
78	In vivo evaluation of novel chitosan graft polymeric micelles for delivery of paclitaxel. Drug Delivery, 2011, 18, 181-189.	5.7	33
79	In Vivo Evaluation of Novel pH-sensitive mPEC-Hz-Chol Conjugate in Liposomes: Pharmacokinetics, Tissue Distribution, Efficacy Assessment. Artificial Cells, Blood Substitutes, and Biotechnology, 2010, 38, 136-142.	0.9	22
80	pH-Sensitive mPEG-Hz-Cholesterol Conjugates as a Liposome Delivery System. Journal of Bioactive and Compatible Polymers, 2010, 25, 527-542.	2.1	34