Dionisios G Vlachos

List of Publications by Citations

Source: https://exaly.com/author-pdf/5648074/dionisios-g-vlachos-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

78 20,527 433 122 h-index g-index citations papers 23,162 464 7.42 7.9 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
433	Microstructural optimization of a zeolite membrane for organic vapor separation. <i>Science</i> , 2003 , 300, 456-60	33.3	863
432	Insights into the interplay of Lewis and Brilsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3997-4006	16.4	496
431	Top ten fundamental challenges of biomass pyrolysis for biofuels. <i>Energy and Environmental Science</i> , 2012 , 5, 7797	35.4	384
430	Mechanistic Insights into the Electrochemical Reduction of CO2 to CO on Nanostructured Ag Surfaces. <i>ACS Catalysis</i> , 2015 , 5, 4293-4299	13.1	353
429	Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable p-Xylene. <i>ACS Catalysis</i> , 2012 , 2, 935-939	13.1	335
428	An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. <i>Journal of Computer-Aided Materials Design</i> , 2007 , 14, 253-308		328
427	Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. <i>Nature Chemistry</i> , 2010 , 2, 484-9	17.6	314
426	Xylose Isomerization to Xylulose and its Dehydration to Furfural in Aqueous Media. <i>ACS Catalysis</i> , 2011 , 1, 1724-1728	13.1	271
425	Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. <i>Nature Communications</i> , 2016 , 7, 10141	17.4	269
424	Conversion of Xylose to Furfural Using Lewis and Brflsted Acid Catalysts in Aqueous Media. <i>ACS Catalysis</i> , 2012 , 2, 2022-2028	13.1	261
423	A review on microcombustion: Fundamentals, devices and applications. <i>Progress in Energy and Combustion Science</i> , 2012 , 38, 321-359	33.6	253
422	Revealing pyrolysis chemistry for biofuels production: Conversion of cellulose to furans and small oxygenates. <i>Energy and Environmental Science</i> , 2012 , 5, 5414-5424	35.4	230
421	Correlating particle size and shape of supported Ru/gamma-Al2O3 catalysts with NH3 decomposition activity. <i>Journal of the American Chemical Society</i> , 2009 , 131, 12230-9	16.4	218
420	Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon. <i>ChemSusChem</i> , 2013 , 6, 1158-62	8.3	213
419	Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. <i>Green Chemistry</i> , 2016 , 18, 1983-1993	10	201
418	Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models. <i>Journal of Catalysis</i> , 2008 , 259, 211-222	7-3	192
417	DFT Study of Furfural Conversion to Furan, Furfuryl Alcohol, and 2-Methylfuran on Pd(111). <i>ACS Catalysis</i> , 2012 , 2, 2496-2504	13.1	184

(2008-2014)

416	Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. <i>Applied Catalysis A: General</i> , 2014 , 480, 17-24	5.1	180	
415	Mechanistic Insights into Metal Lewis Acid-Mediated Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran. <i>ACS Catalysis</i> , 2015 , 5, 3988-3994	13.1	176	
414	Zeolite Growth by Addition of Subcolloidal Particles: Modeling and Experimental Validation. <i>Chemistry of Materials</i> , 2000 , 12, 845-853	9.6	171	
413	Mechanistic Study of Alcohol Dehydration on FAl2O3. ACS Catalysis, 2012 , 2, 1846-1853	13.1	167	
412	Unraveling the Complexity of Catalytic Reactions via Kinetic Monte Carlo Simulation: Current Status and Frontiers. <i>ACS Catalysis</i> , 2012 , 2, 2648-2663	13.1	158	
411	Binomial distribution based tau-leap accelerated stochastic simulation. <i>Journal of Chemical Physics</i> , 2005 , 122, 024112	3.9	157	
410	Structure of the Silica Phase Extracted from Silica/(TPA)OH Solutions Containing Nanoparticles. Journal of Physical Chemistry B, 2003 , 107, 10006-10016	3.4	153	
409	Selective hydrodeoxygenation of biomass-derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts. <i>ChemSusChem</i> , 2013 , 6, 798-801	8.3	148	
408	Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. <i>Journal of Molecular Catalysis A</i> , 2014 , 392, 223-228		146	
407	Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents. <i>Chemistry of Materials</i> , 2004 , 16, 5697-5705	9.6	145	
406	Growth of a faujasite-type zeolite membrane and its application in the separation of saturated/unsaturated hydrocarbon mixtures. <i>Journal of Membrane Science</i> , 2001 , 184, 209-219	9.6	142	
405	Coverage-Induced Conformational Effects on Activity and Selectivity: Hydrogenation and Decarbonylation of Furfural on Pd(111). <i>ACS Catalysis</i> , 2015 , 5, 104-112	13.1	133	
404	A graph-theoretical kinetic Monte Carlo framework for on-lattice chemical kinetics. <i>Journal of Chemical Physics</i> , 2011 , 134, 214115	3.9	133	
403	Spontaneous Formation of Silica Nanoparticles in Basic Solutions of Small Tetraalkylammonium Cations. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 12271-12275	3.4	130	
402	DFT Study of the WaterCas Shift Reaction and Coke Formation on Ni(111) and Ni(211) Surfaces. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 20281-20291	3.8	128	
401	Hydrogenation of Ethylene and Dehydrogenation and Hydrogenolysis of Ethane on Pt(111) and Pt(211): A Density Functional Theory Study. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4973-4982	3.8	128	
400	Thermodynamic Consistency in Microkinetic Development of Surface Reaction Mechanisms. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 12721-12733	3.4	124	
399	Stability and performance of catalytic microreactors: Simulations of propane catalytic combustion on Pt. Chemical Engineering Science, 2008, 63, 1098-1116	4.4	123	

398	Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: a molecular dynamics investigation. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 2637-44	3.6	122
397	Physical basis for the formation and stability of silica nanoparticles in basic solutions of monovalent cations. <i>Langmuir</i> , 2005 , 21, 8960-71	4	116
396	Microkinetic Modeling for Water-Promoted CO Oxidation, Water as Shift, and Preferential Oxidation of CO on Pt. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 15246-15258	3.4	115
395	A DFT study of the acid-catalyzed conversion of 2,5-dimethylfuran and ethylene to p-xylene. <i>Journal of Catalysis</i> , 2013 , 297, 35-43	7.3	114
394	Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media. <i>ChemSusChem</i> , 2013 , 6, 2369-76	8.3	112
393	Role of Silanol Group in Sn-Beta Zeolite for Glucose Isomerization and Epimerization Reactions. <i>ACS Catalysis</i> , 2013 , 3, 2294-2298	13.1	111
392	The Role of Ru and RuO2 in the Catalytic Transfer Hydrogenation of 5-Hydroxymethylfurfural for the Production of 2,5-Dimethylfuran. <i>ChemCatChem</i> , 2014 , 6, 848-856	5.2	111
391	Vapor phase hydrodeoxygenation of furfural to 2-methylfuran on molybdenum carbide catalysts. <i>Catalysis Science and Technology</i> , 2014 , 4, 2340	5.5	110
390	Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 4274-82	3.4	110
389	Tandem Lewis acid/Brfisted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta. <i>Journal of Catalysis</i> , 2016 , 333, 149-161	7.3	108
388	Density Functional Theory-Computed Mechanisms of Ethylene and Diethyl Ether Formation from Ethanol on EAl2O3(100). ACS Catalysis, 2013 , 3, 1965-1975	13.1	107
387	Mechanism of Brfisted acid-catalyzed glucose dehydration. <i>ChemSusChem</i> , 2015 , 8, 1334-41	8.3	107
386	Pyrolytic conversion of cellulose to fuels: levoglucosan deoxygenation via elimination and cyclization within molten biomass. <i>Energy and Environmental Science</i> , 2012 , 5, 7864	35.4	105
385	Hierarchical multiscale mechanism development for methane partial oxidation and reforming and for thermal decomposition of oxygenates on Rh. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 16819-35	3.4	102
384	Differentiation of O-H and C-H bond scission mechanisms of ethylene glycol on Pt and Ni/Pt using theory and isotopic labeling experiments. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7996-800	04 ^{6.4}	101
383	Formation and structure of self-assembled silica nanoparticles in basic solutions of organic and inorganic cations. <i>Langmuir</i> , 2005 , 21, 5197-206	4	101
382	A Review of Multiscale Analysis: Examples from Systems Biology, Materials Engineering, and Other FluidBurface Interacting Systems. <i>Advances in Chemical Engineering</i> , 2005 , 30, 1-61	0.6	100
381	Mechanisms for High Selectivity in the Hydrodeoxygenation of 5-Hydroxymethylfurfural over PtCo Nanocrystals. <i>ACS Catalysis</i> , 2016 , 6, 4095-4104	13.1	100

380	Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. <i>Nature Chemistry</i> , 2016 , 8, 331-7	17.6	99
379	First-Principles-Based Kinetic Monte Carlo Simulation of the Structure Sensitivity of the Water G as Shift Reaction on Platinum Surfaces. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 24750-24762	3.8	97
378	Coarse-grained stochastic processes for microscopic lattice systems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 782-7	11.5	97
377	Converting fructose to 5-hydroxymethylfurfural: a quantum mechanics/molecular mechanics study of the mechanism and energetics. <i>Carbohydrate Research</i> , 2011 , 346, 664-72	2.9	95
376	Microreactor Modeling for Hydrogen Production from Ammonia Decomposition on Ruthenium. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 2986-2999	3.9	95
375	Kinetic and Thermodynamic Studies of Silica Nanoparticle Dissolution. <i>Chemistry of Materials</i> , 2007 , 19, 4189-4197	9.6	94
374	The chain length effect in pyrolysis: bridging the gap between glucose and cellulose. <i>Green Chemistry</i> , 2012 , 14, 1284	10	93
373	Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems. <i>Journal of Computational Physics</i> , 2003 , 186, 250-278	4.1	93
372	Guaiacol hydrodeoxygenation mechanism on Pt(111): insights from density functional theory and linear free energy relations. <i>ChemSusChem</i> , 2015 , 8, 315-22	8.3	91
371	Kinetics of Homogeneous Brflsted Acid Catalyzed Fructose Dehydration and 5-Hydroxymethyl Furfural Rehydration: A Combined Experimental and Computational Study. <i>ACS Catalysis</i> , 2014 , 4, 259-2	267.1	90
370	Density Functional Theory-Derived Group Additivity and Linear Scaling Methods for Prediction of Oxygenate Stability on Metal Catalysts: Adsorption of Open-Ring Alcohol and Polyol Dehydrogenation Intermediates on Pt-Based Metals. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 20155-7	3.8 20166	90
369	Multiscale integration hybrid algorithms for homogeneousfleterogeneous reactors. <i>AICHE Journal</i> , 1997 , 43, 3031-3041	3.6	90
368	Fluorescence confocal optical microscopy imaging of the grain boundary structure of zeolite MFI membranes made by secondary (seeded) growth. <i>Journal of Membrane Science</i> , 2001 , 182, 103-109	9.6	90
367	Tandem Lewis/Brfisted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(III) chloride and hydrochloric acid solution. <i>Green Chemistry</i> , 2015 , 17, 4725-4735	10	89
366	Fabrication of Single-Channel Catalytic Microburners: Effect of Confinement on the Oxidation of Hydrogen/Air Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 4833-4840	3.9	89
365	Correlating extent of PtNi bond formation with low-temperature hydrogenation of benzene and 1,3-butadiene over supported Pt/Ni bimetallic catalysts. <i>Journal of Catalysis</i> , 2010 , 271, 239-250	7.3	87
364	Structural analysis of humins formed in the Brlisted acid catalyzed dehydration of fructose. <i>Green Chemistry</i> , 2018 , 20, 997-1006	10	85
363	Cascade of Liquid-Phase Catalytic Transfer Hydrogenation and Etherification of 5-Hydroxymethylfurfural to Potential Biodiesel Components over Lewis Acid Zeolites. ChemCatChem 2014 6, 508-513	5.2	85

362	A C1 microkinetic model for methane conversion to syngas on Rh/Al2O3. AICHE Journal, 2009, 55, 993-7	19,068	83
361	Combined DFT, Microkinetic, and Experimental Study of Ethanol Steam Reforming on Pt. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 4691-4706	3.8	80
360	A Theoretical and Computational Analysis of Linear Free Energy Relations for the Estimation of Activation Energies. <i>ACS Catalysis</i> , 2012 , 2, 1624-1634	13.1	80
359	Elucidating the Roles of Zeolite H-BEA in Aqueous-Phase Fructose Dehydration and HMF Rehydration. <i>ACS Catalysis</i> , 2013 , 3, 1279-1291	13.1	80
358	Evolution of self-assembled silica-tetrapropylammonium nanoparticles at elevated temperatures. Journal of Physical Chemistry B, 2005 , 109, 12762-71	3.4	80
357	Challenges of and Insights into Acid-Catalyzed Transformations of Sugars. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 22815-22833	3.8	79
356	Identification of descriptors for the CO interaction with metal nanoparticles. <i>Nano Letters</i> , 2010 , 10, 1041-5	11.5	79
355	Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts. <i>ChemSusChem</i> , 2015 , 8, 2046-54	8.3	77
354	The role of radical wall quenching in flame stability and wall heat flux: hydrogen-air mixtures. <i>Combustion Theory and Modelling</i> , 1998 , 2, 515-530	1.5	77
353	From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass. <i>ACS Central Science</i> , 2018 , 4, 701-708	16.8	77
352	Overcoming stiffness in stochastic simulation stemming from partial equilibrium: a multiscale Monte Carlo algorithm. <i>Journal of Chemical Physics</i> , 2005 , 123, 144114	3.9	76
351	Construction and optimization of complex surface-reaction mechanisms. AICHE Journal, 2000, 46, 2017-	-250629	73
350	Kinetic Regime Change in the Tandem Dehydrative Aromatization of Furan Diels Alder Products. <i>ACS Catalysis</i> , 2015 , 5, 2367-2375	13.1	72
349	Correlating Ethylene Glycol Reforming Activity with In Situ EXAFS Detection of Ni Segregation in Supported NiPt Bimetallic Catalysts. <i>ACS Catalysis</i> , 2012 , 2, 2290-2296	13.1	72
348	Thermal Management in Catalytic Microreactors. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 76-84	3.9	71
347	Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles. <i>Journal of Chemical Physics</i> , 2003 , 119, 9412-9427	3.9	71
346	DielsAlder cycloaddition of 2-methylfuran and ethylene for renewable toluene. <i>Applied Catalysis B: Environmental</i> , 2016 , 180, 487-496	21.8	70
345	Kinetic Modeling of Pt Catalyzed and Computation-Driven Catalyst Discovery for Ethylene Glycol Decomposition. <i>ACS Catalysis</i> , 2011 , 1, 1246-1256	13.1	69

(2005-2006)

344	Silica self-assembly and synthesis of microporous and mesoporous silicates. <i>Chemistry - A European Journal</i> , 2006 , 12, 2926-34	4.8	69
343	Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling. <i>Journal of Chemical Physics</i> , 2007 , 127, 154716	3.9	68
342	Kinetics of faceting of crystals in growth, etching, and equilibrium. <i>Physical Review B</i> , 1993 , 47, 4896-49	09 .3	68
341	Biomass-Derived Butadiene by Dehydra-Decyclization of Tetrahydrofuran. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 3732-3736	8.3	67
340	p-Xylene Formation by Dehydrative Aromatization of a DielsAlder Product in Lewis and Brfisted Acidic Zeolites. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 24415-24424	3.8	67
339	The effect of oxide acidity on HMF etherification. <i>Catalysis Science and Technology</i> , 2014 , 4, 3074-3081	5.5	67
338	A DFT study of furan hydrogenation and ring opening on Pd(111). <i>Green Chemistry</i> , 2014 , 16, 736-747	10	66
337	A Generalized Approach for Predicting Coverage-Dependent Reaction Parameters of Complex Surface Reactions: Application to H2 Oxidation over Platinum. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 8101-8107	2.8	66
336	Simulations and experiments on the growth and microstructure of zeolite MFI films and membranes made by secondary growth. <i>Microporous and Mesoporous Materials</i> , 2001 , 42, 191-203	5.3	65
335	Pt catalysts for efficient aerobic oxidation of glucose to glucaric acid in water. <i>Green Chemistry</i> , 2016 , 18, 3815-3822	10	64
334	A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 5310-5324	3.9	63
333	CD bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. <i>Nature Catalysis</i> , 2020 , 3, 446-453	36.5	62
332	Conjugation-Driven "Reverse Mars-van Krevelen"-Type Radical Mechanism for Low-Temperature C-O Bond Activation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8104-13	16.4	62
331	Mechanistic Insights into Lewis Acid Metal Salt-Catalyzed Glucose Chemistry in Aqueous Solution. <i>ACS Catalysis</i> , 2016 , 6, 1497-1504	13.1	62
330	Tungsten carbides as selective deoxygenation catalysts: experimental and computational studies of converting C3 oxygenates to propene. <i>Green Chemistry</i> , 2014 , 16, 761-769	10	62
329	Derivation and validation of mesoscopic theories for diffusion of interacting molecules. <i>Physical Review Letters</i> , 2000 , 85, 3898-901	7.4	62
328	Insights into the isomerization of xylose to xylulose and lyxose by a Lewis acid catalyst. <i>Carbohydrate Research</i> , 2013 , 368, 89-95	2.9	60
327	CFD Simulations of Coupled, Countercurrent Combustor/Reformer Microdevices for Hydrogen Production. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 4982-4992	3.9	60

Ignition and extinction of flames near surfaces: Combustion of CH4 in air. AICHE Journal, 1994, 40, 1005-1,617 60 326 Theoretical Approach To Predict the Stability of Supported Single-Atom Catalysts. ACS Catalysis, 325 13.1 59 2019, 9, 3289-3297 Mechanism of Dehydration of Phenols on Noble Metals via First-Principles Microkinetic Modeling. 324 13.1 59 ACS Catalysis, 2016, 6, 3047-3055 Mechanistic Study of the Direct Hydrodeoxygenation of m-Cresol over WOx-Decorated Pt/C 58 323 13.1 Catalysts. ACS Catalysis, 2018, 8, 7749-7759 Site-Dependent Lewis Acidity of FAl2O3 and Its Impact on Ethanol Dehydration and Etherification. 3.8 58 322 Journal of Physical Chemistry C, 2014, 118, 12899-12907 Reactive Deposition of Metal Thin Films within Porous Supports from Supercritical Fluids. Chemistry 9.6 58 321 of Materials, 2001, 13, 2023-2031 A perspective on the modeling of biomass processing. Energy and Environmental Science, 2012, 5, 6703 35.4 320 57 Hydrodeoxygenation of HMF over Pt/C in a continuous flow reactor. AICHE Journal, 2015, 61, 590-597 319 3.6 56 Patched bimetallic surfaces are active catalysts for ammonia decomposition. Nature 318 17.4 54 Communications, 2015, 6, 8619 Adsorption of Acid, Ester, and Ether Functional Groups on Pt: Fast Prediction of Thermochemical Properties of Adsorbed Oxygenates via DFT-Based Group Additivity Methods. Journal of Physical 3.8 317 53 Chemistry C, 2012, 116, 1873-1886 Methane steam reforming at microscales: Operation strategies for variable power output at 316 3.6 53 millisecond contact times. AICHE Journal, 2009, 55, 180-191 Plastic waste to fuels by hydrocracking at mild conditions. Science Advances, 2021, 7, 315 14.3 53 Building large microkinetic models with first-principles? accuracy at reduced computational cost. 314 4.4 52 Chemical Engineering Science, 2015, 121, 190-199 Insights into the Cr(III) catalyzed isomerization mechanism of glucose to fructose in the presence of 3.6 313 water using ab initio molecular dynamics. Physical Chemistry Chemical Physics, 2014, 16, 19564-72 Ethanol Activation on Closed-Packed Surfaces. Industrial & Engineering Chemistry Research, 312 3.9 52 **2015**, 54, 4213-4225 Solventless CI Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an 311 51 13.1 Improved Graphene Oxide Carbocatalyst. ACS Catalysis, 2017, 7, 3905-3915 Brflstedflvansflolanyi and Transition State Scaling Relations of Furan Derivatives on Pd(111) and 310 13.1 51 Their Relation to Those of Small Molecules. ACS Catalysis, 2014, 4, 604-612 An Efficient Reaction Pathway Search Method Applied to the Decomposition of Glycerol on 3.8 309 51 Platinum. Journal of Physical Chemistry C, 2011, 115, 18707-18720

(2017-2009)

308	Dominant Reaction Pathways in the Catalytic Partial Oxidation of CH4 on Rh. <i>Topics in Catalysis</i> , 2009 , 52, 1983-1988	2.3	50
307	Assessment of Overall Rate Expressions and Multiscale, Microkinetic Model Uniqueness via Experimental Data Injection: Ammonia Decomposition on Ru/EAl2O3 for Hydrogen Production. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 5255-5265	3.9	50
306	A First Principles-Based Microkinetic Model for the Conversion of Fructose to 5-Hydroxymethylfurfural. <i>ChemCatChem</i> , 2012 , 4, 504-511	5.2	49
305	Multiscale modeling reveals poisoning mechanisms of MgO-supported Au clusters in CO oxidation. <i>Nano Letters</i> , 2012 , 12, 3621-6	11.5	48
304	DFT-driven multi-site microkinetic modeling of ethanol conversion to ethylene and diethyl ether on EAl2O3(1 1 1). <i>Journal of Catalysis</i> , 2015 , 323, 121-131	7-3	47
303	Microkinetic Modeling and Reduced Rate Expressions of Ethylene Hydrogenation and Ethane Hydrogenolysis on Platinum. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 28-40	3.9	47
302	Time accelerated Monte Carlo simulations of biological networks using the binomial tau-leap method. <i>Bioinformatics</i> , 2005 , 21, 2136-7	7.2	47
301	Fundamentals of CD bond activation on metal oxide catalysts. <i>Nature Catalysis</i> , 2019 , 2, 269-276	36.5	46
300	Aqueous-phase fructose dehydration using Brfisted acid zeolites: Catalytic activity of dissolved aluminosilicate species. <i>Applied Catalysis A: General</i> , 2014 , 469, 116-123	5.1	46
299	Millisecond Methane Steam Reforming Via Process and Catalyst Intensification. <i>Chemical Engineering and Technology</i> , 2008 , 31, 1201-1209	2	46
298	Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures. <i>Journal of Chemical Physics</i> , 2006 , 124, 64110	3.9	46
297	Carbohydrate dehydration using porous catalysts. Current Opinion in Chemical Engineering, 2012, 1, 312	:- <u>3</u> ;2;0	45
296	Insights into the early stages of metal nanoparticle formation via first-principle calculations: the roles of citrate and water. <i>Langmuir</i> , 2008 , 24, 7465-73	4	45
295	A new approach to response surface development for detailed gas-phase and surface reaction kinetic model optimization. <i>International Journal of Chemical Kinetics</i> , 2003 , 36, 94-106	1.4	45
294	Parameter Optimization of Molecular Models: Application to Surface Kinetics. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 1174-1183	3.9	45
293	Computational Insight into the Effect of Sn-Beta Na Exchange and Solvent on Glucose Isomerization and Epimerization. <i>ACS Catalysis</i> , 2015 , 5, 5256-5263	13.1	44
292	Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jet-fuel Ranged Alkanes over a Rhenium-Modified Iridium Catalyst. <i>ChemSusChem</i> , 2017 , 10, 3225-3234	8.3	44
291	Adipic Acid Production via Metal-Free Selective Hydrogenolysis of Biomass-Derived Tetrahydrofuran-2,5-Dicarboxylic Acid. <i>ACS Catalysis</i> , 2017 , 7, 6619-6634	13.1	44

290	Silica nanoparticle formation in the TPAOH-TEOS-H2O system: a population balance model. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 3098-108	3.4	44
289	The effects of phase transitions, surface diffusion, and defects on surface catalyzed reactions: Fluctuations and oscillations. <i>Journal of Chemical Physics</i> , 1990 , 93, 8306-8313	3.9	44
288	Multiscale Model and Informatics-Based Optimal Design of Experiments: Application to the Catalytic Decomposition of Ammonia on Ruthenium. <i>Industrial & Designos Chemistry Research</i> , 2008 , 47, 6555-6567	3.9	43
287	Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules. <i>Journal of Chemical Physics</i> , 2004 , 121, 11420-31	3.9	43
286	Reaction Pathways of Biomass-Derived Oxygenates over Metals and Carbides: From Model Surfaces to Supported Catalysts. <i>ChemCatChem</i> , 2015 , 7, 1402-1421	5.2	42
285	Deactivation of Pt/Al2O3 during propane oxidation at low temperatures: Kinetic regimes and platinum oxide formation. <i>Journal of Catalysis</i> , 2016 , 337, 122-132	7.3	42
284	Intensification of steam reforming of natural gas: Choosing combustible fuel and reforming catalyst. <i>Chemical Engineering Science</i> , 2010 , 65, 398-404	4.4	42
283	Modeling Ignition of Catalytic Reactors with Detailed Surface Kinetics and Transport: Oxidation of H2/Air Mixtures over Platinum Surfaces. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 2558	8 ³ 2567	, 42
282	Physicochemical Characterization of Silicalite-1 Surface and Its Implications on Crystal Growth. <i>Langmuir</i> , 2003 , 19, 4619-4626	4	42
281	Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans. ACS Central Science, 2016 , 2, 820-82	4 16.8	41
280	High vs. low temperature reforming for hydrogen production via microtechnology. <i>Chemical Engineering Science</i> , 2009 , 64, 4856-4865	4.4	41
279	Molecular dynamics studies on the role of tetramethylammonium cations in the stability of the silica octamers Si8O20(8-) in solution. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 10429-34	3.4	41
278	Multiscale modeling for emergent behavior, complexity, and combinatorial explosion. <i>AICHE Journal</i> , 2012 , 58, 1314-1325	3.6	40
277	Extending the region of stable homogeneous micro-combustion through forced unsteady operation. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 3293-3300	5.9	40
276	Two-dimensional detailed modeling of fuel-rich . Chemical Engineering Science, 2008, 63, 2657-2669	4.4	40
275	Structures of small metal clusters. I. Low temperature behavior. <i>Journal of Chemical Physics</i> , 1992 , 96, 6880-6890	3.9	40
274	Optimization of the facet structure of transition-metal catalysts applied to the oxygen reduction reaction. <i>Nature Chemistry</i> , 2019 , 11, 449-456	17.6	39
273	Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations. <i>Biophysical Chemistry</i> , 2006 , 121, 194-208	3.5	39

(2011-2019)

272	Chemoselective Hydrodeoxygenation of Carboxylic Acids to Hydrocarbons over Nitrogen-Doped CarbonAlumina Hybrid Supported Iron Catalysts. <i>ACS Catalysis</i> , 2019 , 9, 1564-1577	13.1	39
271	Understanding solvent effects on adsorption and protonation in porous catalysts. <i>Nature Communications</i> , 2020 , 11, 1060	17.4	38
270	Computational Insights into the Role of Metal and Acid Sites in Bifunctional Metal/Zeolite Catalysts: A Case Study of Acetone Hydrogenation to 2-Propanol and Subsequent Dehydration to Propene. <i>ACS Catalysis</i> , 2016 , 6, 123-133	13.1	38
269	Theoretical and Experimental Studies of CII versus CID Bond Scission of Ethylene Glycol Reaction Pathways via Metal-Modified Molybdenum Carbides. <i>ACS Catalysis</i> , 2014 , 4, 1409-1418	13.1	38
268	Fructose-water-dimethylsulfoxide interactions by vibrational spectroscopy and molecular dynamics simulations. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 11274-83	3.4	38
267	Equivalence of on-Lattice Stochastic Chemical Kinetics with the Well-Mixed Chemical Master Equation in the Limit of Fast Diffusion. <i>Computers and Chemical Engineering</i> , 2011 , 35, 2602-2610	4	38
266	Role of Lewis and Brfisted Acidity in Metal Chloride Catalysis in Organic Media: Reductive Etherification of Furanics. <i>ACS Catalysis</i> , 2017 , 7, 7363-7370	13.1	36
265	Catalysis Center for Energy Innovation for Biomass Processing: Research Strategies and Goals. <i>Catalysis Letters</i> , 2010 , 140, 77-84	2.8	36
264	Adsorption of the compounds encountered in monosaccharide dehydration in zeolite beta. <i>Langmuir</i> , 2013 , 29, 6597-605	4	34
263	Multiscale model for epitaxial growth of films: Growth mode transition. <i>Physical Review B</i> , 2001 , 64,	3.3	34
262	Effect of errors in linear scaling relations and BrfistedEvansPolanyi relations on activity and selectivity maps. <i>Journal of Catalysis</i> , 2016 , 338, 273-283	7.3	34
261	Homogeneous Metal Salt Solutions for Biomass Upgrading and Other Select Organic Reactions. <i>ACS Catalysis</i> , 2019 , 9, 9923-9952	13.1	33
2 60	Solvent-tuned hydrophobicity for faujasite-catalyzed cycloaddition of biomass-derived dimethylfuran for renewable p-xylene. <i>Green Chemistry</i> , 2014 , 16, 4086	10	33
259	Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells. <i>Nature Communications</i> , 2017 , 8, 418	17.4	33
258	Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5116-5120	3.8	33
257	Controlling Homogeneous Chemistry in Homogeneous Heterogeneous Reactors: Application to Propane Combustion. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 5962-5968	3.9	33
256	Adsorption in zeolites using mechanically embedded ONIOM clusters. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 26094-26106	3.6	32
255	Alcohol Adsorption onto Silicalite from Aqueous Solution. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18659-18669	3.8	32

254	What controls au nanoparticle dispersity during growth?. Nano Letters, 2010, 10, 3408-13	11.5	31
253	From microscopic interactions to macroscopic laws of cluster evolution. <i>Physical Review Letters</i> , 2000 , 84, 1511-4	7.4	31
252	Renewable lubricants with tailored molecular architecture. Science Advances, 2019, 5, eaav5487	14.3	30
251	Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials. <i>Nature Communications</i> , 2020 , 11, 1513	17.4	30
250	Kinetic regimes in the tandem reactions of H-BEA catalyzed formation of p-xylene from dimethylfuran. <i>Catalysis Science and Technology</i> , 2016 , 6, 178-187	5.5	30
249	On the Brfisted acid-catalyzed homogeneous hydrolysis of furans. <i>ChemSusChem</i> , 2013 , 6, 2066-8	8.3	30
248	Heterogeneities in EGF receptor density at the cell surface can lead to concave up scatchard plot of EGF binding. <i>FEBS Letters</i> , 2005 , 579, 3043-7	3.8	30
247	DFT Study of the Conversion of Furfuryl Alcohol to 2-Methylfuran on RuO2 (110). <i>Journal of Physical Chemistry C</i> , 2015 , 119, 5938-5945	3.8	29
246	Novel micromixers driven by flow instabilities: Application to post-reactors. <i>AICHE Journal</i> , 2005 , 51, 3193-3204	3.6	29
245	Ultrafast flow chemistry for the acid-catalyzed conversion of fructose. <i>Energy and Environmental Science</i> , 2019 , 12, 2463-2475	35.4	28
244	Molecular screening of alcohol and polyol adsorption onto MFI-type zeolites. <i>Langmuir</i> , 2012 , 28, 4491	-94	28
243	Scale-out of Microreactor Stacks for Portable and Distributed Processing: Coupling of Exothermic and Endothermic Processes for Syngas Production. <i>Industrial & Distributed Processes</i> for Syngas Production. <i>Industrial & Distributed Processes</i> for Syngas Production. <i>Industrial & Distributed Processing:</i> Coupling of Exothermic 2010, 49, 10942-10955	3.9	28
242	Spectral Methods for Mesoscopic Models of Pattern Formation. <i>Journal of Computational Physics</i> , 2001 , 173, 364-390	4.1	28
241	Validation of mesoscopic theory and its application to computing concentration dependent diffusivities. <i>Journal of Chemical Physics</i> , 2001 , 115, 11278-11288	3.9	28
240	Acylation of methylfuran with Brūsted and Lewis acid zeolites. <i>Applied Catalysis A: General</i> , 2018 , 564, 90-101	5.1	27
239	Reactive adsorption for the selective dehydration of sugars to furans: Modeling and experiments. <i>AICHE Journal</i> , 2013 , 59, 3378-3390	3.6	27
238	Millisecond Production of Hydrogen from Alternative, High Hydrogen Density Fuels in a Cocurrent Multifunctional Microreactor. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 1749-1760	3.9	27
237	Stochastic simulations of ErbB homo and heterodimerisation: potential impacts of receptor conformational state and spatial segregation. <i>IET Systems Biology</i> , 2008 , 2, 256-72	1.4	27

236	Self-assembly and phase behavior of germanium oxide nanoparticles in basic aqueous solutions. Langmuir, 2007 , 23, 2784-91	4	27
235	Design Principles of Heteroepitaxial Bimetallic Catalysts. <i>ACS Catalysis</i> , 2013 , 3, 2248-2255	13.1	26
234	Experimental and theoretical studies of ammonia decomposition activity on Fe-Pt, Co-Pt, and Cu-Pt bimetallic surfaces. <i>Journal of Chemical Physics</i> , 2011 , 134, 184701	3.9	26
233	Bifurcation analysis of Liesegang ring pattern formation. <i>Physical Review Letters</i> , 2004 , 92, 088301	7.4	26
232	Reaction Pathways and Intermediates in Selective Ring Opening of Biomass-Derived Heterocyclic Compounds by Iridium. <i>ACS Catalysis</i> , 2016 , 6, 7002-7009	13.1	26
231	Distribution of open sites in Sn-Beta zeolite. <i>Microporous and Mesoporous Materials</i> , 2017 , 245, 45-50	5.3	25
230	Nanoporous CuAlto Alloys for Selective Furfural Hydrodeoxygenation to 2-Methylfuran. <i>Industrial & Description of the Chemistry Research</i> , 2017 , 56, 3866-3872	3.9	25
229	Ring Activation of Furanic Compounds on Ruthenium-Based Catalysts. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 6075-6085	3.8	25
228	Group Additivity for Aqueous Phase Thermochemical Properties of Alcohols on Pt(111). <i>Journal of Physical Chemistry C</i> , 2017 , 121, 21510-21519	3.8	25
227	A Combined DFT and Statistical Mechanics Study for the CO Oxidation on the Au10 Cluster. Journal of Physical Chemistry C, 2011 , 115, 20192-20200	3.8	25
226	Initial stages of self-organization of silica-alumina gels in zeolite synthesis. <i>Langmuir</i> , 2007 , 23, 4532-40	4	25
225	Understanding the differences between microporous and mesoporous synthesis through the phase behavior of silica. <i>Microporous and Mesoporous Materials</i> , 2006 , 90, 102-111	5.3	25
224	Computational modeling reveals molecular details of epidermal growth factor binding. <i>BMC Cell Biology</i> , 2005 , 6, 41		25
223	Ring-Opening Reaction of Furfural and Tetrahydrofurfuryl Alcohol on Hydrogen-Predosed Iridium(1 1 1) and Cobalt/Iridium(1 1 1) Surfaces. <i>ChemCatChem</i> , 2017 , 9, 1701-1707	5.2	24
222	First-Principles Kinetic and Spectroscopic Insights into Single-Atom Catalysis. ACS Catalysis, 2019 , 9, 500) 2 -5 0 1	024
221	Group Additivity and Modified Linear Scaling Relations for Estimating Surface Thermochemistry on Transition Metal Surfaces: Application to Furanics. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 10417-104	1268	24
220	Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: experiment and simulation. <i>ChemSusChem</i> , 2014 , 7, 236-44	8.3	24
219	Roles of thermal and radical quenching in emissions of wall-stabilized hydrogen flames. <i>AICHE Journal</i> , 1998 , 44, 2025-2034	3.6	24

218	Microscopic simulation of membrane molecule diffusion on corralled membrane surfaces. <i>Biophysical Journal</i> , 2008 , 94, 1551-64	2.9	24
217	Thermodynamics of Silica Nanoparticle Self-Assembly in Basic Solutions of Monovalent Cations. Journal of Physical Chemistry C, 2008 , 112, 14754-14761	3.8	24
216	Catalysis at the sub-nanoscale: complex CO oxidation chemistry on a few Au atoms. <i>Catalysis Science and Technology</i> , 2015 , 5, 134-141	5.5	23
215	Molybdenum Oxide-Modified Iridium Catalysts for Selective Production of Renewable Oils for Jet and Diesel Fuels and Lubricants. <i>ACS Catalysis</i> , 2019 , 9, 7679-7689	13.1	23
214	Group Additivity for Estimating Thermochemical Properties of Furanic Compounds on Pd(111). <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 11929-11938	3.9	23
213	Growth mechanisms of metal nanoparticles via first principles. <i>Physical Review Letters</i> , 2009 , 102, 1555	0 5 .4	23
212	Bifurcation Behavior of Premixed Hydrogen/Air Mixtures in a Continuous Stirred Tank Reactor. <i>Combustion Science and Technology</i> , 1995 , 109, 347-371	1.5	23
211	Coupled stochastic spatial and non-spatial simulations of ErbB1 signaling pathways demonstrate the importance of spatial organization in signal transduction. <i>PLoS ONE</i> , 2009 , 4, e6316	3.7	23
210	Effect of Substitutionally Doped Graphene on the Activity of Metal Nanoparticle Catalysts for the Hydrogen Oxidation Reaction. <i>ACS Catalysis</i> , 2019 , 9, 1129-1139	13.1	23
209	Tandem DielsAlder Reaction of Dimethylfuran and Ethylene and Dehydration to para-Xylene Catalyzed by Zeotypic Lewis Acids. <i>ChemCatChem</i> , 2017 , 9, 2523-2535	5.2	22
208	Acceleration and sensitivity analysis of lattice kinetic Monte Carlo simulations using parallel processing and rate constant rescaling. <i>Journal of Chemical Physics</i> , 2017 , 147, 164103	3.9	22
207	Thermochemistry of gas-phase and surface species via LASSO-assisted subgraph selection. <i>Reaction Chemistry and Engineering</i> , 2018 , 3, 454-466	4.9	22
206	Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid. <i>Catalysis Science and Technology</i> , 2018 , 8, 2661-	2 <i>ē7</i> 51	22
205	Error estimates in semi-empirical estimation methods of surface reactions. <i>Journal of Catalysis</i> , 2013 , 297, 202-216	7.3	22
204	Experiments and computations of microfluidic liquid liquid flow patterns. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 39-50	4.9	22
203	Polypropylene Plastic Waste Conversion to Lubricants over Ru/TiO2 Catalysts. <i>ACS Catalysis</i> , 2021 , 11, 8104-8115	13.1	22
202	Insights into the Ring-Opening of Biomass-Derived Furanics over Carbon-Supported Ruthenium. <i>ChemSusChem</i> , 2016 , 9, 3113-3121	8.3	22
201	Recent advances in understanding the pH dependence of the hydrogen oxidation and evolution reactions. <i>Journal of Catalysis</i> , 2018 , 367, 328-331	7.3	22

(2011-2019)

200	Studies, Electrolyte Solution Modeling, Molecular Dynamics Simulations, and 13C NMR Experiments. ACS Catalysis, 2019 , 9, 10551-10561	13.1	21	
199	Tuning cellulose pyrolysis chemistry: selective decarbonylation via catalyst-impregnated pyrolysis. <i>Catalysis Science and Technology</i> , 2014 , 4, 3822-3825	5.5	21	
198	Comparison of ignition strategies for catalytic microburners. <i>Proceedings of the Combustion Institute</i> , 2009 , 32, 3027-3034	5.9	21	
197	Coarse-grained kinetic Monte Carlo models: Complex lattices, multicomponent systems, and homogenization at the stochastic level. <i>Journal of Chemical Physics</i> , 2008 , 129, 184101	3.9	21	
196	Partial oxidation of light alkanes in short contact time microreactors. <i>Catalysis</i> ,98-137	1.6	21	
195	A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation. <i>Computer Physics Communications</i> , 2020 , 247, 106864	4.2	21	
194	The Future is Garbage: Repurposing of Food Waste to an Integrated Biorefinery. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 8124-8136	8.3	20	
193	The origin of selectivity in the conversion of glucose to fructose and mannose in Sn-BEA and Na-exchanged Sn-BEA zeolites. <i>Journal of Catalysis</i> , 2017 , 355, 11-16	7.3	20	
192	Liquid-phase dehydration of propylene glycol using solid-acid catalysts. <i>Applied Catalysis A: General</i> , 2012 , 449, 59-68	5.1	20	
191	Efficient gradient estimation using finite differencing and likelihood ratios for kinetic Monte Carlo simulations. <i>Journal of Computational Physics</i> , 2012 , 231, 7170-7186	4.1	20	
190	Effect of oxide support surface area on hydrogenation activity: Pt/Ni bimetallic catalysts supported on low and high surface area Al2O3 and ZrO2. <i>Applied Catalysis A: General</i> , 2011 , 408, 87-95	5.1	20	
189	Recent Advances in the Photocatalytic Conversion of Biomass-Derived Furanic Compounds. <i>ACS Catalysis</i> , 2021 , 11, 11336-11359	13.1	20	
188	General Acid-Type Catalysis in the Dehydrative Aromatization of Furans to Aromatics in H-[Al]-BEA, H-[Fe]-BEA, H-[Ga]-BEA, and H-[B]-BEA Zeolites. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 13666-13679	3.8	19	
187	Inhibition of Xylene Isomerization in the Production of Renewable Aromatic Chemicals from Biomass-Derived Furans. <i>ACS Catalysis</i> , 2016 , 6, 2076-2088	13.1	19	
186	Production of high-yield short-chain oligomers from cellulose via selective hydrolysis in molten salt hydrates and separation. <i>Green Chemistry</i> , 2019 , 21, 5030-5038	10	19	
185	Microkinetic modeling of Pt-catalyzed ethylene glycol steam reforming. <i>Applied Catalysis A: General</i> , 2012 , 431-432, 18-24	5.1	19	
184	Correlating the Surface Chemistry of C2 and C3 Aldoses with a C6 Sugar: Reaction of Glucose, Glyceraldehyde, and Glycolaldehyde on Pd(111). <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18891-18898	3 ^{3.8}	19	
183	Microkinetic modeling of the fast selective catalytic reduction of nitrogen oxide with ammonia on H-ZSM5 based on first principles. <i>Journal of Catalysis</i> , 2011 , 283, 178-191	7-3	19	

182	Enhancing stability in parallel plate microreactor stacks for syngas production. <i>Chemical Engineering Science</i> , 2011 , 66, 1051-1059	4.4	19
181	Structures of small metal clusters. II. Phase transitions and isomerization. <i>Journal of Chemical Physics</i> , 1992 , 96, 6891-6901	3.9	19
180	From Density Functional Theory to Microchemical Device Homogenization: Model Prediction of Hydrogen Production For Portable Fuel Cells. <i>International Journal for Multiscale Computational Engineering</i> , 2004 , 2, 221-238	2.4	19
179	Effect of oxide supports in stabilizing desirable Pt-Ni bimetallic structures for hydrogenation and reforming reactions. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12156-64	3.6	18
178	Effect of local metal microstructure on adsorption on bimetallic surfaces: atomic nitrogen on Ni/Pt(111). <i>Journal of Chemical Physics</i> , 2013 , 138, 174702	3.9	18
177	The Effects of the MgO Support and Alkali Doping on the CO Interaction with Au. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 7329-7335	3.8	18
176	Understanding mixing of Ni and Pt in the Ni/Pt(111) bimetallic catalyst via molecular simulation and experiments. <i>Journal of Chemical Physics</i> , 2010 , 133, 224503	3.9	18
175	Hierarchical Reduced Models for Catalytic Combustion: H2/Air Mixtures Near Platinum Surfaces. <i>Combustion Science and Technology</i> , 1997 , 129, 243-275	1.5	18
174	A hybrid multiscale Monte Carlo algorithm (HyMSMC) to cope with disparity in time scales and species populations in intracellular networks. <i>BMC Bioinformatics</i> , 2007 , 8, 175	3.6	18
173	The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance. <i>ACS Catalysis</i> , 2020 , 10, 12666-12695	13.1	18
172	Catalytic production of renewable lubricant base oils from bio-based 2-alkylfurans and enals. <i>Green Chemistry</i> , 2019 , 21, 3606-3614	10	17
171	Potential of mean force for tetramethylammonium binding to cagelike oligosilicates in aqueous solution. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16138-47	16.4	17
170	Reductive catalytic fractionation of agricultural residue and energy crop lignin and application of lignin oil in antimicrobials. <i>Green Chemistry</i> , 2020 , 22, 7435-7447	10	17
169	Stability of heterogeneous single-atom catalysts: a scaling law mapping thermodynamics to kinetics. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	17
168	Direct speciation methods to quantify catalytically active species of AlCl in glucose isomerization <i>RSC Advances</i> , 2018 , 8, 17101-17109	3.7	17
167	Dehydra-Decyclization of Tetrahydrofuran on H-ZSM5: Mechanisms, Pathways, and Transition State Entropy. <i>ACS Catalysis</i> , 2019 , 9, 10279-10293	13.1	16
166	Lattice Convolutional Neural Network Modeling of Adsorbate Coverage Effects. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 18951-18959	3.8	16
165	Scaling relationships and theory for vibrational frequencies of adsorbates on transition metal surfaces. <i>Nature Communications</i> , 2017 , 8, 1842	17.4	16

1	64	Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory. <i>BMC Bioinformatics</i> , 2013 , 14, 311	3.6	16	
1	163	Ammonia decomposition activity on monolayer Ni supported on Ru, Pt and WC substrates. <i>Surface Science</i> , 2011 , 605, 2055-2060	1.8	16	
1	62	Modeling Silica Nanoparticle Dissolution in TPAOHTEOS⊞2O Solutions. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 14769-14775	3.8	16	
1	161	Temporal acceleration of spatially distributed kinetic Monte Carlo simulations. <i>Journal of Computational Physics</i> , 2006 , 211, 596-615	4.1	16	
1	160	A Review of Biorefinery Separations for Bioproduct Production via Thermocatalytic Processing. Annual Review of Chemical and Biomolecular Engineering, 2017 , 8, 115-137	8.9	15	
1	-59	Comparison of Ethylene Glycol Steam Reforming Over Pt and NiPt Catalysts on Various Supports. Topics in Catalysis, 2013 , 56, 1644-1650	2.3	15	
1	158	High-Temperature Decomposition of Brilsted Acid Sites in Gallium-Substituted Zeolites. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 19395-19405	3.8	15	
1	57	Kinetically driven instabilities and selectivities in methane oxidation. <i>AICHE Journal</i> , 1997 , 43, 2083-2095	3.6	15	
1	156	Molecular dynamics study of the stabilization of the silica hexamer Si6O15(6-) in aqueous and methanolic solutions. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 7-10	3.4	15	
1	55	Modeling of zeolite L crystallization using continuum time Monte Carlo simulations. <i>Journal of Chemical Physics</i> , 1999 , 111, 2143-2150	3.9	15	
1	54	Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia. <i>Jacs Au</i> , 2021 , 1, 1422-1434		15	
1	-53	Group Additivity for Thermochemical Property Estimation of Lignin Monomers on Pt(111). <i>Journal of Physical Chemistry C</i> , 2016 , 120, 19234-19241	3.8	14	
1	152	Operation regimes in catalytic combustion: H2/air mixtures near Pt. AICHE Journal, 1998 , 44, 2035-2043 3	3.6	14	
1	51	Systems tasks in nanotechnology via hierarchical multiscale modeling: Nanopattern formation in heteroepitaxy. <i>Chemical Engineering Science</i> , 2007 , 62, 4852-4863	4.4	14	
1	150	A Complete Pressure Temperature Diagram for Air Oxidation of Hydrogen in a Continuous-Flow Stirred Tank Reactor. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 7990-7999	2.8	14	
1	49	Scaleup of a Single-Mode Microwave Reactor. <i>Industrial & Discrete Land Branch</i> , 2020, 59, 2516-2523	3.9	14	
1	148	Branched Bio-Lubricant Base Oil Production through Aldol Condensation. <i>ChemSusChem</i> , 2019 , 12, 47808	343785	13	
1	47	Microkinetic Modeling of Ethane Total Oxidation on Pt. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 10051-10058	3.9	13	

146	Temporal coarse-graining of microscopic-lattice kinetic Monte Carlo simulations via tau leaping. <i>Physical Review E</i> , 2008 , 78, 046713	2.4	13
145	Multiscale hybrid modeling of film deposition within porous substrates. <i>AICHE Journal</i> , 2004 , 50, 684-69	15 .6	13
144	Steady state likelihood ratio sensitivity analysis for stiff kinetic Monte Carlo simulations. <i>Journal of Chemical Physics</i> , 2015 , 142, 044108	3.9	12
143	Catalytic resonance theory: parallel reaction pathway control. <i>Chemical Science</i> , 2020 , 11, 3501-3510	9.4	12
142	On the oligomerization mechanism of Brīlsted acid-catalyzed conversion of furans to diesel-range fuels. <i>Applied Catalysis A: General</i> , 2014 , 485, 118-122	5.1	12
141	Selective hydrodeoxygenation of tartaric acid to succinic acid. <i>Catalysis Science and Technology</i> , 2017 , 7, 4944-4954	5.5	12
140	Density Functional Theory Study of Methane Oxidation and Reforming on Pt(111) and Pt(211). <i>Industrial & Description of the Computer Study of Methane Oxidation and Reforming on Pt(111) and Pt(211).</i> **Industrial & Description of the Computer Study of Methane Oxidation and Reforming on Pt(111) and Pt(211).	3.9	12
139	Predicting the adsorption behavior in bulk from metal clusters. <i>Chemical Physics Letters</i> , 2011 , 518, 99-1	0.3 5	12
138	A Fast Approach to Predictive Models: NO-Oxidation in Exhaust Gas Aftertreatment Systems. <i>Topics in Catalysis</i> , 2009 , 52, 1925-1928	2.3	12
137	Spatially adaptive grand canonical ensemble Monte Carlo simulations. <i>Physical Review E</i> , 2005 , 71, 0267	024	12
136	The role of macroscopic transport phenomena in film microstructure during epitaxial growth. <i>Applied Physics Letters</i> , 1999 , 74, 2797-2799	3.4	12
135	Products in methane combustion near surfaces. AICHE Journal, 1994, 40, 1018-1025	3.6	12
134	Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences. <i>Science Advances</i> , 2020 , 6,	14.3	12
133	Methyl-ligated tin silsesquioxane catalyzed reactions of glucose. <i>Journal of Catalysis</i> , 2016 , 341, 62-71	7.3	12
132	Microkinetic Modeling and Reduced Rate Expression of the WaterCas Shift Reaction on Nickel. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 10269-10280	3.9	12
131	Parallelization of tau-leap coarse-grained Monte Carlo simulations on GPUs 2010 ,		11
130	Hybrid quantum mechanics/molecular mechanics-based molecular dynamics simulation of acid-catalyzed dehydration of polyols in liquid water. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 8816-27	1 ^{2.8}	11
129	Molecular dynamics of hydrogen dissociation on an oxygen covered Pt(111) surface. <i>Journal of Chemical Physics</i> , 2008 , 128, 154708	3.9	11

128	The roles of supersaturation, terrace width, and impurities on the formation of macrosteps on crystal surfaces using the terrace-ledge-kink model. <i>Surface Science</i> , 1992 , 262, 359-370	1.8	11
127	Solvent selection for biphasic extraction of 5-hydroxymethylfurfural via multiscale modeling and experiments. <i>Green Chemistry</i> , 2020 , 22, 8699-8712	10	11
126	Process Systems Engineering Perspective on the Design of Materials and Molecules. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 5194-5206	3.9	11
125	LiquidDiquid Microfluidic Flows for Ultrafast 5-Hydroxymethyl Furfural Extraction. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 3723-3735	3.9	11
124	Biomass-derived oxygenate reforming on Pt(111): A demonstration of surface science using d-glucose and its model surrogate glycolaldehyde. <i>Surface Science</i> , 2012 , 606, L91-L94	1.8	10
123	Homogenization of mesoscopic theories: Effective properties of model membranes. <i>AICHE Journal</i> , 2002 , 48, 1083-1092	3.6	10
122	Periodic patterning in materials deposition by self-regulating diffusion-reaction processes. <i>Applied Physics Letters</i> , 2003 , 82, 3357-3359	3.4	10
121	Theoretical Study of Ethylene Hydroformylation on Atomically Dispersed Rh/Al2O3 Catalysts: Reaction Mechanism and Influence of the ReOx Promoter. <i>ACS Catalysis</i> , 2021 , 11, 9506-9518	13.1	10
120	Ethane Dehydrogenation on Single and Dual Centers of Ga-modified EAl2O3. <i>ACS Catalysis</i> , 2021 , 11, 1380-1391	13.1	10
119	A review of thermal and thermocatalytic valorization of food waste. <i>Green Chemistry</i> , 2021 , 23, 2806-28	33 <u>3</u> 0	10
118	Kinetic Studies of Acid Hydrolysis of Food Waste-Derived Saccharides. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 17365-17374	3.9	10
117	Catalytic Hydrotreatment of Humins to Bio-Oil in Methanol over Supported Metal Catalysts. <i>ChemSusChem</i> , 2018 , 11, 3609-3617	8.3	10
116	Single pot catalyst strategy to branched products via adhesive isomerization and hydrocracking of polyethylene over platinum tungstated zirconia. <i>Applied Catalysis B: Environmental</i> , 2021 , 299, 120483	21.8	10
115	Phosphonate-Modified UiO-66 Brflsted Acid Catalyst and Its Use in Dehydra-Decyclization of 2-Methyltetrahydrofuran to Pentadienes. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13260-1	3 2 6 6	9
114	Growth kinetics of humins studied via X-ray scattering. <i>Green Chemistry</i> , 2020 , 22, 2301-2309	10	9
113	Cooperative Catalysis by Surface Lewis Acid/Silanol for Selective Fructose Etherification on Sn-SPP Zeolite. <i>ACS Catalysis</i> , 2018 , 8, 9056-9065	13.1	9
112	Multilevel coarse graining and nano-pattern discovery in many particle stochastic systems. <i>Journal of Computational Physics</i> , 2012 , 231, 2599-2620	4.1	9
111	Kinetic modeling of Pt-catalyzed glycolaldehyde decomposition to syngas. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 4621-8	2.8	9

110	Long-time integration methods for mesoscopic models of pattern-forming systems. <i>Journal of Computational Physics</i> , 2011 , 230, 5704-5715	4.1	9
109	Pattern Formation in Porous Media via the Liesegang Ring Mechanism. <i>Industrial & amp; Engineering Chemistry Research</i> , 2004 , 43, 3073-3084	3.9	9
108	Multiscale Modeling Combined with Active Learning for Microstructure Optimization of Bifunctional Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 6146-6154	3.9	9
107	Microkinetic modeling of aqueous phase biomass conversion: Application to ethylene glycol reforming. <i>Chemical Engineering Science</i> , 2019 , 197, 415-418	4.4	9
106	Fast microflow kinetics and acid catalyst deactivation in glucose conversion to 5-hydroxymethylfurfural. <i>Reaction Chemistry and Engineering</i> , 2021 , 6, 152-164	4.9	9
105	Spectroscopic characterization of a highly selective NiCu3/C hydrodeoxygenation catalyst. <i>Catalysis Science and Technology</i> , 2018 , 8, 6100-6108	5.5	9
104	Tandem Aromatization of Oxygenated Furans by Framework Zinc In Zeolites. A Computational Study. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 22178-22186	3.8	8
103	Operation and Optimization of Microwave-Heated Continuous-Flow Microfluidics. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 10418-10427	3.9	8
102	Adaptive coarse-grained Monte Carlo simulation of reaction and diffusion dynamics in heterogeneous plasma membranes. <i>BMC Bioinformatics</i> , 2010 , 11, 218	3.6	8
101	The role of molecular interactions and interfaces in diffusion: transport diffusivity and evaluation of the Darken approximation. <i>Journal of Chemical Physics</i> , 2005 , 123, 184707	3.9	8
100	Downsizing Chemical Processes for Portable Hydrogen Production. ACS Symposium Series, 2005, 179-1	93 5.4	8
99	Spontaneous Formation of Periodically Patterned Deposits by Chemical Vapor Deposition. <i>Journal of the American Chemical Society</i> , 2000 , 122, 12864-12865	16.4	8
98	Comparison of small metal clusters: Ni, Pd, Pt, Cu, Ag, Au. <i>Zeitschrift Fl Physik D-Atoms Molecules and Clusters</i> , 1993 , 26, 156-158		8
97	Hydrodeoxygenation of m-Cresol Over Pt-WOx/C Using H2 Generated In Situ by n-Hexane Dehydrogenation. <i>Catalysis Letters</i> , 2020 , 150, 913-921	2.8	8
96	Surface chemistry dictates stability and oxidation state of supported single metal catalyst atoms. <i>Chemical Science</i> , 2020 , 11, 1469-1477	9.4	8
95	Finite-Temperature Structures of Supported Subnanometer Catalysts Inferred Statistical Learning and Genetic Algorithm-Based Optimization. <i>ACS Nano</i> , 2020 , 14, 13995-14007	16.7	8
94	Active learning-driven quantitative synthesis Structure Property relations for improving performance and revealing active sites of nitrogen-doped carbon for the hydrogen evolution reaction. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 2134-2147	4.9	8
93	Stochastic averaging and sensitivity analysis for two scale reaction networks. <i>Journal of Chemical Physics</i> , 2016 , 144, 074104	3.9	8

(2013-2021)

One-step lignocellulose depolymerization and saccharification to high sugar yield and less condensed isolated lignin. <i>Green Chemistry</i> , 2021 , 23, 1200-1211	10	8
Multiscale modeling of microwave-heated multiphase systems. <i>Chemical Engineering Journal</i> , 2020 , 397, 125262	14.7	7
Characterization of Oxidation States in Metal/Metal Oxide Catalysts in Liquid-Phase Hydrodeoxygenation Reactions with a Trickle Bed Reactor. <i>Industrial & Discourse in Chemistry Research</i> , 2018 , 57, 5591-5598	3.9	7
Poisoning of Ru/C by homogeneous Brlisted acids in hydrodeoxygenation of 2,5-dimethylfuran via catalytic transfer hydrogenation. <i>Applied Catalysis A: General</i> , 2017 , 542, 327-335	5.1	7
1,2-H- versus 1,2-C-Shift on Sn-Silsesquioxanes. <i>ACS Catalysis</i> , 2017 , 7, 25-33	13.1	7
Design and Fabrication of a High-Throughput Microreactor and Its Evaluation for Highly Exothermic Reactions. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 16270-16277	3.9	7
Computational-based catalyst design for thermochemical transformations. MRS Bulletin, 2011, 36, 211-3	2 3 . 5	7
Adsorption and Diffusion of Methanol, Glycerol, and Their Mixtures in a Metal Organic Framework. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 14084-14089	3.9	7
Nanoscale surface pattern evolution in heteroepitaxial bimetallic films. ACS Nano, 2011, 5, 7168-75	16.7	7
Catalytic Partial Oxidation Pilot Plant Study. <i>Industrial & amp; Engineering Chemistry Research</i> , 2010 , 49, 94-103	3.9	7
Catalytic Adipic Acid Production on Zeolites from Biomass-Derived Tetrahydrofuran-2,5-dicarboxylic Acid. <i>ACS Applied Energy Materials</i> , 2020 , 3, 99-105	6.1	7
Ethylene production by direct conversion of methane over isolated single active centers. <i>Chemical Engineering Journal</i> , 2021 , 420, 130493	14.7	7
Temperature Homogeneity under Selective and Localized Microwave Heating in Structured Flow Reactors. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 6835-6847	3.9	7
Oxidation of aromatic oxygenates for the production of terephthalic acid. <i>Applied Catalysis A: General</i> , 2018 , 552, 98-104	5.1	6
Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model. <i>AIP Advances</i> , 2018 , 8, 035021	1.5	6
Volcano Curves for in Silico Prediction of Mono- and Bifunctional Catalysts: Application to Ammonia Decomposition. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 27097-27104	3.8	6
On factors controlling activity of submonolayer bimetallic catalysts: nitrogen desorption. <i>Journal of Chemical Physics</i> , 2014 , 140, 014703	3.9	6
CoreBhell Nanocatalyst Design by Combining High-Throughput Experiments and First-Principles Simulations. <i>ChemCatChem</i> , 2013 , 5, 3712-3718	5.2	6
	condensed isolated lignin. <i>Green Chemistry</i> , 2021, 23, 1200-1211 Multiscale modeling of microwave-heated multiphase systems. <i>Chemical Engineering Journal</i> , 2020, 397, 125262 Characterization of Oxidation States in Metal/Metal Oxide Catalysts in Liquid-Phase Hydrodeoxygenation Reactions with a Trickle Bed Reactor. <i>Industrial & Dystal Bamp</i> : Engineering Chemistry Research, 2018, 57, 5591-5598 Poisoning of Ru/C by homogeneous Britisted acids in hydrodeoxygenation of 2,5-dimethylfuran via catalytic transfer hydrogenation. <i>Applied Catalysis A: General</i> , 2017, 542, 327-335 1,2-H- versus 1,2-C-Shift on Sn-Silsesquioxanes. <i>ACS Catalysis</i> , 2017, 7, 25-33 Design and Fabrication of a High-Throughput Microreactor and Its Evaluation for Highly Exothermic Reactions. <i>Industrial & Dystal Bamp</i> : Engineering Chemistry Research, 2012, 51, 16270-16277 Computational-based catalyst design for thermochemical transformations. <i>MRS Bulletin</i> , 2011, 36, 211- Adsorption and Diffusion of Methanol, Clycerol, and Their Mixtures in a Metal Organic Framework. <i>Industrial & Dystal Bamp</i> : Engineering Chemistry Research, 2011, 50, 14084-14089 Nanoscale surface pattern evolution in heteroepitaxial bimetallic films. <i>ACS Nano</i> , 2011, 5, 7168-75 Catalytic Partial Oxidation Pilot Plant Study. <i>Industrial & Dystal Bamp</i> : Engineering Chemistry Research, 2010, 49, 94-103 Catalytic Adipic Acid Production on Zeolites from Biomass-Derived Tetrahydrofuran-2,5-dicarboxylic Acid. <i>ACS Applied Energy Materials</i> , 2020, 3, 99-105 Ethylene production by direct conversion of methane over isolated single active centers. <i>Chemical Engineering Journal</i> , 2021, 420, 130493 Temperature Homogeneity under Selective and Localized Microwave Heating in Structured Flow Reactors. <i>Industrial & Dystal</i> , 120, 1404-1404. Oxidation of aromatic oxygenates for the production of terephthalic acid. <i>Applied Catalysis A: General</i> , 2018, 552, 98-104 Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular	Multiscale modeling of microwave-heated multiphase systems. Chemical Engineering Journal, 2020, 397, 125262 Characterization of Oxidation States in Metal/Metal Oxide Catalysts in Liquid-Phase Hydrodeoxygenation Reactions with a Trickle Bed Reactor. Industrial & Designeering Chemistry Research, 2018, 57, 5591-5598 Poisoning of RU/C by homogeneous Britsed acids in hydrodeoxygenation of 2,5-dimethylfuran via catalytic transfer hydrogenstion. Applied Catalysis A: General, 2017, 542, 327-335 1,2-H- versus 1,2-C-Shift on Sn-Silsesquioxanes. ACS Catalysis, 2017, 7, 25-33 1,2-H- versus 1,2-C-Shift on Sn-Silsesquioxanes. ACS Catalysis, 2017, 7, 25-33 1,2-H- versus 1,2-C-Shift on Sn-Silsesquioxanes. ACS Catalysis, 2017, 7, 25-33 2,3-Design and Fabrication of a High-Throughput Microreactor and Its Evaluation for Highly Exothermic Reactions. Industrial & Design and Fabrication of A High-Throughput Microreactor and Its Evaluation for Highly Exothermic Reactions. Industrial & Design and Fabrication of A High-Throughput Microreactor and Its Evaluation for Highly Exothermic Reactions. Industrial & Design and Fabrication of Amount of Methanol, Glycerol, and Their Mixtures in a Metal Organic Framework. Industrial & Design and Diffusion of Methanol, Glycerol, and Their Mixtures in a Metal Organic Framework. Industrial & Design and Plant Study. Industrial & Design & Chemistry Research, 2011, 50, 14084-14089 Nanoscale surface pattern evolution in heteroepitaxial bimetallic films. ACS Nano, 2011, 5, 7168-75 16-7 Catalytic Partial Oxidation Pilot Plant Study. Industrial & Design & Chemistry Research, 2010, 3-9 Catalytic Adipic Acid Production on Zeolites from Biomass-Derived Tetrahydrofuran-2,5-dicarboxylic Acid. ACS Applied Energy Materials, 2020, 3, 99-105 Ethylene production by direct conversion of methane over isolated single active centers. Chemical Engineering Journal, 2021, 420, 130493 Temperature Homogeneity under Selective and Localized Microwave Heating in Structured Flow Reactors. Industrial & Design Sci. 2010,

74	Solvent-induced frequency shifts of 5-hydroxymethylfurfural deduced via infrared spectroscopy and ab initio calculations. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 12149-60	2.8	6
73	Synthesis of mesoporous silica nanobamboo with highly dispersed tungsten carbide nanoparticles. <i>Dalton Transactions</i> , 2012 , 41, 6914-8	4.3	6
72	Nonlinear dynamics of surface stabilized premixed and diffusion flames: current trends and future directions. <i>Chemical Engineering Science</i> , 2000 , 55, 311-319	4.4	6
71	Numerical Assessment of Theoretical Error Estimates in Coarse-Grained Kinetic Monte Carlo Simulations: Application to Surface Diffusion. <i>International Journal for Multiscale Computational Engineering</i> , 2005 , 3, 59-70	2.4	6
70	An unconventional DCOx favored Co/N-C catalyst for efficient conversion of fatty acids and esters to liquid alkanes. <i>Applied Catalysis A: General</i> , 2020 , 591, 117385	5.1	6
69	Thiol-promoted catalytic synthesis of high-performance furan-containing lubricant base oils from biomass derived 2-alkylfurans and ketones. <i>Green Chemistry</i> , 2020 , 22, 7896-7906	10	6
68	Synthesis of rigid and stable large-inner-diameter multiwalled carbon nanotubes. <i>RSC Advances</i> , 2012 , 2, 2685	3.7	5
67	Roles of Transients and Nucleation in Film Deposition within a Support. <i>Industrial & amp; Engineering Chemistry Research</i> , 2003 , 42, 1321-1328	3.9	5
66	Complex dynamics of combustion flows by direct numerical simulations. <i>Physics of Fluids</i> , 2000 , 12, 252	-24545	5
65	A Review of Microwave-assisted Process Intensified Multiphase Reactors. <i>Chemical Engineering Journal</i> , 2021 , 133183	14.7	5
64	Extraction of Furfural and Furfural/5-Hydroxymethylfurfural from Mixed Lignocellulosic Biomass-Derived Feedstocks. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 7489-7498	8.3	5
63	Intensified microwave-assisted heterogeneous catalytic reactors for sustainable chemical manufacturing. <i>Chemical Engineering Journal</i> , 2021 , 420, 130476	14.7	5
62	Intensified reactive extraction for the acid-catalyzed conversion of fructose to 5-hydroxymethyl furfural. <i>Chemical Engineering Journal</i> , 2022 , 428, 132556	14.7	5
61	Modulating the dynamics of Brfisted acid sites on PtWOx inverse catalyst. <i>Nature Catalysis</i> , 2022 , 5, 144-153	36.5	5
60	Reaction Network Viewer (ReNView): An open-source framework for reaction path visualization of chemical reaction systems. <i>SoftwareX</i> , 2020 , 11, 100442	2.7	4
59	Continuum mesoscopic framework for multiple interacting species and processes on multiple site types and/or crystallographic planes. <i>Journal of Chemical Physics</i> , 2007 , 127, 034705	3.9	4
58	Molecular sieve valves driven by adsorbate-adsorbate interactions: hysteresis in permeation of microporous membranes. <i>Journal of Chemical Physics</i> , 2005 , 122, 204706	3.9	4
57	Instabilities in homogeneous nonisothermal reactors: Comparison of deterministic and Monte Carlo simulations. <i>Journal of Chemical Physics</i> , 1995 , 102, 1781-1790	3.9	4

56	Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction <i>Science Advances</i> , 2022 , 8, eabj7523	14.3	4
55	Polyolefin plastic waste hydroconversion to fuels, lubricants, and waxes: a comparative study. Reaction Chemistry and Engineering,	4.9	4
54	Experimental Insights into the Coupling of Methane Combustion and Steam Reforming in a Catalytic Plate Reactor in Transient Mode. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 196-209	3.9	4
53	Spectroscopic Probe Molecule Selection Using Quantum Theory, First-Principles Calculations, and Machine Learning. <i>ACS Nano</i> , 2020 ,	16.7	4
52	Mechanism of Brfisted Acid-Catalyzed Glucose Dehydration. <i>ChemSusChem</i> , 2015 , 8, 1291-1291	8.3	3
51	Mesoscopic Modeling of Surface Processes. <i>The IMA Volumes in Mathematics and Its Applications</i> , 2004 , 179-198	0.5	3
50	The role of molecular interactions and interfaces in diffusion: permeation through single-crystal and polycrystalline microporous membranes. <i>Journal of Chemical Physics</i> , 2005 , 123, 184708	3.9	3
49	Catalytic resonance of ammonia synthesis by simulated dynamic ruthenium crystal strain <i>Science Advances</i> , 2022 , 8, eabl6576	14.3	3
48	NEXTorch: A Design and Bayesian Optimization Toolkit for Chemical Sciences and Engineering. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 5312-5319	6.1	3
47	Microkinetic Modeling of Surface Catalysis 2020 , 1377-1404		3
46	Reversible Formation of Silanol Groups in Two-Dimensional Siliceous Nanomaterials under Mild Hydrothermal Conditions. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 18045-18053	3.8	3
45	Improved slit-shaped microseparator and its integration with a microreactor for modular biomanufacturing. <i>Green Chemistry</i> , 2021 , 23, 3700-3714	10	3
44	Synthesis of (hemi)cellulosic lubricant base oils via catalytic coupling and deoxygenation pathways. <i>Green Chemistry</i> , 2021 , 23, 4916-4930	10	3
43	Accurate Thermochemistry of Complex Lignin Structures via Density Functional Theory, Group Additivity, and Machine Learning. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 3043-3049	8.3	3
42	Regularized machine learning on molecular graph model explains systematic error in DFT enthalpies. <i>Scientific Reports</i> , 2021 , 11, 14372	4.9	3
41	Microwave heating of slurries. Chemical Engineering Journal, 2021, 417, 127892	14.7	3
40	Cost and energy efficient cyclic separation of 5-hydroxymethyl furfural from an aqueous solution. <i>Green Chemistry</i> , 2021 , 23, 4008-4023	10	3
39	Programmable heating and quenching for efficient thermochemical synthesis <i>Nature</i> , 2022 , 605, 470-	 47 5 6.4	3

38	Phosphonate-Modified UiO-66 Brlisted Acid Catalyst and Its Use in Dehydra-Decyclization of 2-Methyltetrahydrofuran to Pentadienes. <i>Angewandte Chemie</i> , 2020 , 132, 13362-13368	3.6	2
37	Molecular valves actuated by intermolecular forces. <i>Physical Review E</i> , 2005 , 71, 060201	2.4	2
36	Reaction network reduction for distributed systems by model training in lumped reactors: Application to bifurcations in combustion. <i>Chaos</i> , 1999 , 9, 95-107	3.3	2
35	Modular Plasma Microreactor for Intensified Hydrogen Peroxide Production. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 1829-1838	8.3	2
34	Accelerating manufacturing for biomass conversion via integrated process and bench digitalization: a perspective. <i>Reaction Chemistry and Engineering</i> ,	4.9	2
33	Inline Rolling Shear Alignment: Deposition and Long-Range Order of Block Polymer Templates in a Fast, Single-Step Process. <i>ACS Applied Polymer Materials</i> ,	4.3	2
32	Lignin monomer conversion into biolubricant base oils. <i>Green Chemistry</i> , 2021 , 23, 10090-10100	10	2
31	Thermochemical Data Fusion Using Graph Representation Learning. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 4673-4683	6.1	2
30	Experimental data-driven reaction network identification and uncertainty quantification of CO2-assisted ethane dehydrogenation over Ga2O3/Al2O3. <i>Chemical Engineering Science</i> , 2021 , 237, 11	6 5 34	2
29	Experimental and Theoretical Insights into the Active Sites on WOx/Pt(111) Surfaces for Dehydrogenation and Dehydration Reactions. <i>ACS Catalysis</i> , 2021 , 11, 8023-8032	13.1	2
28	Scaling of Transition State Vibrational Frequencies and Application of d-Band Theory to the BrūstedĒvansPolanyi Relationship on Surfaces. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 7119-7129	3.8	2
27	Catalytic Hydrotreatment of Humins to Bio-Oil in Methanol over Supported Metal Catalysts. <i>ChemSusChem</i> , 2018 , 11, 3545-3545	8.3	2
26	Chemical Kinetics Bayesian Inference Toolbox (CKBIT). <i>Computer Physics Communications</i> , 2021 , 265, 107989	4.2	2
25	Production of renewable oleo-furan surfactants by cross-ketonization of biomass-derived furoic acid and fatty acids. <i>Catalysis Science and Technology</i> , 2021 , 11, 2762-2769	5.5	2
24	110th Anniversary: Kinetics and X-ray Absorption Spectroscopy in Methane Total Oxidation over Alumina-Supported Pt, Pd, and Ag P d Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 17718-17726	3.9	1
23	Transport Phenomena in Microscale Reacting Flows 2013 , 283-302		1
22	Microreactor Engineering: Processes, Detailed Design and Modeling179-198		1
21	Kinetics of Facet Formation During Growth and Etching of Crystals. <i>Materials Research Society Symposia Proceedings</i> , 1991 , 237, 145		1

20	Brlisted Acid Catalysis of the Direct Acylation of 2-Methylfuran by Acetic Acid. Theoretical Insights into the Role of Brlisted Acidity and Confinement. <i>ACS Catalysis</i> , 2021 , 11, 9916-9925	13.1	1
19	Microkinetic Modeling of Surface Catalysis 2018 , 1-28		1
18	Learning Chemistry of Complex Reaction Systems via a Python First-Principles Reaction Rule Stencil (pReSt) Generator. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 3431-3441	6.1	1
17	Real-time dynamics and structures of supported subnanometer catalysts via multiscale simulations. <i>Nature Communications</i> , 2021 , 12, 5430	17.4	1
16	Prediction of Transition-State Scaling Relationships and Universal Transition-State Vibrational and Entropic Correlations for Dehydrogenations. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 19780-19790	3.8	1
15	Mathematical Strategies for the Coarse-Graining of Microscopic Models 2005 , 1477-1490		1
14	Plasma technology for lignocellulosic biomass conversion toward an electrified biorefinery. <i>Green Chemistry</i> , 2022 , 24, 2680-2721	10	1
13	Microwave Heating-Induced Temperature Gradients in Liquid Biphasic Systems. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 3011-3022	3.9	1
12	Automated exploitation of the big configuration space of large adsorbates on transition metals reveals chemistry feasibility <i>Nature Communications</i> , 2022 , 13, 2087	17.4	1
11	Python Group Additivity (pGrAdd) software for estimating species thermochemical properties. <i>Computer Physics Communications</i> , 2022 , 273, 108277	4.2	O
10	Uncertainty Quantification and Error Propagation in the Enthalpy and Entropy of Surface Reactions Arising from a Single DFT Functional. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 18187-18196	3.8	O
9	Volcano curves for homologous series reactions: Oxidation of small alkanes. <i>Applied Catalysis A: General</i> , 2019 , 587, 117255	5.1	
8	Branched Bio-Lubricant Base Oil Production through Aldol Condensation. <i>ChemSusChem</i> , 2019 , 12, 472	2 3 8.3	
7	Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jet-fuel Ranged Alkanes over a Rhenium-Modified Iridium Catalyst. <i>ChemSusChem</i> , 2017 , 10, 3164-3164	8.3	
6	The role of reaction engineering in cancer biology: Bio-imaging informatics reveals implications of the plasma membrane heterogeneities. <i>Chemical Engineering Science</i> , 2007 , 62, 5222-5231	4.4	
5	Mesoscopic modeling of binary diffusion through microporous zeolite membranes. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 752, 1		
4	Continuum and Stochastic Modeling on the Role of Gel Microstructure in Zeolite Crystallization. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 431, 197		
3	Mathematical Strategies for the Coarse-Graining of Microscopic Models 2005 , 1477-1490		

- 2 Ozone Treatment **2005**, 1993-2001
- Catalytic Kinetics and Dynamics161-189