Dionisios G Vlachos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5648074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science, 2003, 191, 485-487.	12.6	987
2	Insights into the Interplay of Lewis and BrÃ,nsted Acid Catalysts in Glucose and Fructose Conversion to 5-(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media. Journal of the American Chemical Society, 2013, 135, 3997-4006.	13.7	586
3	Mechanistic Insights into the Electrochemical Reduction of CO ₂ to CO on Nanostructured Ag Surfaces. ACS Catalysis, 2015, 5, 4293-4299.	11.2	476
4	Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy and Environmental Science, 2012, 5, 7797.	30.8	474
5	Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable <i>p</i> -Xylene. ACS Catalysis, 2012, 2, 935-939.	11.2	400
6	Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nature Chemistry, 2010, 2, 484-489.	13.6	381
7	An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. Journal of Computer-Aided Materials Design, 2007, 14, 253-308.	0.7	376
8	Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nature Communications, 2016, 7, 10141.	12.8	368
9	Conversion of Xylose to Furfural Using Lewis and BrÃ,nsted Acid Catalysts in Aqueous Media. ACS Catalysis, 2012, 2, 2022-2028.	11.2	312
10	A review on microcombustion: Fundamentals, devices and applications. Progress in Energy and Combustion Science, 2012, 38, 321-359.	31.2	307
11	Xylose Isomerization to Xylulose and its Dehydration to Furfural in Aqueous Media. ACS Catalysis, 2011, 1, 1724-1728.	11.2	301
12	Correlating Particle Size and Shape of Supported Ru/γ-Al ₂ O ₃ Catalysts with NH ₃ Decomposition Activity. Journal of the American Chemical Society, 2009, 131, 12230-12239.	13.7	279
13	Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. Green Chemistry, 2016, 18, 1983-1993.	9.0	276
14	Revealing pyrolysis chemistry for biofuels production: Conversion of cellulose to furans and small oxygenates. Energy and Environmental Science, 2012, 5, 5414-5424.	30.8	267
15	Production of Dimethylfuran from Hydroxymethylfurfural through Catalytic Transfer Hydrogenation with Ruthenium Supported on Carbon. ChemSusChem, 2013, 6, 1158-1162.	6.8	247
16	Mechanistic Insights into Metal Lewis Acid-Mediated Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran. ACS Catalysis, 2015, 5, 3988-3994.	11.2	244
17	DFT Study of Furfural Conversion to Furan, Furfuryl Alcohol, and 2-Methylfuran on Pd(111). ACS Catalysis, 2012, 2, 2496-2504.	11.2	232
18	Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models. Journal of Catalysis, 2008, 259, 211-222.	6.2	223

#	Article	IF	CITATIONS
19	Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. Applied Catalysis A: General, 2014, 480, 17-24.	4.3	216
20	Plastic waste to fuels by hydrocracking at mild conditions. Science Advances, 2021, 7, .	10.3	214
21	Mechanistic Study of Alcohol Dehydration on γ-Al ₂ O ₃ . ACS Catalysis, 2012, 2, 1846-1853.	11.2	199
22	Unraveling the Complexity of Catalytic Reactions via Kinetic Monte Carlo Simulation: Current Status and Frontiers. ACS Catalysis, 2012, 2, 2648-2663.	11.2	195
23	Binomial distribution based Ï"-leap accelerated stochastic simulation. Journal of Chemical Physics, 2005, 122, 024112.	3.0	184
24	Zeolite Growth by Addition of Subcolloidal Particles:Â Modeling and Experimental Validation. Chemistry of Materials, 2000, 12, 845-853.	6.7	179
25	Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. Journal of Molecular Catalysis A, 2014, 392, 223-228.	4.8	178
26	Selective Hydrodeoxygenation of Biomassâ€Derived Oxygenates to Unsaturated Hydrocarbons using Molybdenum Carbide Catalysts. ChemSusChem, 2013, 6, 798-801.	6.8	173
27	Coverage-Induced Conformational Effects on Activity and Selectivity: Hydrogenation and Decarbonylation of Furfural on Pd(111). ACS Catalysis, 2015, 5, 104-112.	11.2	172
28	A graph-theoretical kinetic Monte Carlo framework for on-lattice chemical kinetics. Journal of Chemical Physics, 2011, 134, 214115.	3.0	171
29	Structure of the Silica Phase Extracted from Silica/(TPA)OH Solutions Containing Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 10006-10016.	2.6	164
30	Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents. Chemistry of Materials, 2004, 16, 5697-5705.	6.7	164
31	Growth of a faujasite-type zeolite membrane and its application in the separation of saturated/unsaturated hydrocarbon mixtures. Journal of Membrane Science, 2001, 184, 209-219.	8.2	161
32	DFT Study of the Water–Gas Shift Reaction and Coke Formation on Ni(111) and Ni(211) Surfaces. Journal of Physical Chemistry C, 2012, 116, 20281-20291.	3.1	157
33	Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: a molecular dynamics investigation. Physical Chemistry Chemical Physics, 2012, 14, 2637.	2.8	146
34	Thermodynamic Consistency in Microkinetic Development of Surface Reaction Mechanisms. Journal of Physical Chemistry B, 2003, 107, 12721-12733.	2.6	145
35	Hydrogenation of Ethylene and Dehydrogenation and Hydrogenolysis of Ethane on Pt(111) and Pt(211): A Density Functional Theory Study. Journal of Physical Chemistry C, 2010, 114, 4973-4982.	3.1	142
36	A DFT study of the acid-catalyzed conversion of 2,5-dimethylfuran and ethylene to p-xylene. Journal of Catalysis, 2013, 297, 35-43.	6.2	139

#	Article	IF	CITATIONS
37	Stability and performance of catalytic microreactors: Simulations of propane catalytic combustion on Pt. Chemical Engineering Science, 2008, 63, 1098-1116.	3.8	137
38	Spontaneous Formation of Silica Nanoparticles in Basic Solutions of Small Tetraalkylammonium Cations. Journal of Physical Chemistry B, 2004, 108, 12271-12275.	2.6	136
39	The Role of Ru and RuO ₂ in the Catalytic Transfer Hydrogenation of 5â€Hydroxymethylfurfural for the Production of 2,5â€Đimethylfuran. ChemCatChem, 2014, 6, 848-856.	3.7	136
40	Mechanism of BrÃ,nsted Acid atalyzed Glucose Dehydration. ChemSusChem, 2015, 8, 1334-1341.	6.8	135
41	Microkinetic Modeling for Water-Promoted CO Oxidation, Waterâ^Gas Shift, and Preferential Oxidation of CO on Pt. Journal of Physical Chemistry B, 2004, 108, 15246-15258.	2.6	134
42	Vapor phase hydrodeoxygenation of furfural to 2-methylfuran on molybdenum carbide catalysts. Catalysis Science and Technology, 2014, 4, 2340.	4.1	132
43	Tandem Lewis acid/BrÃ,nsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta. Journal of Catalysis, 2016, 333, 149-161.	6.2	132
44	Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. Nature Chemistry, 2016, 8, 331-337.	13.6	131
45	C–O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. Nature Catalysis, 2020, 3, 446-453.	34.4	131
46	Density Functional Theory-Computed Mechanisms of Ethylene and Diethyl Ether Formation from Ethanol on γ-Al ₂ O ₃ (100). ACS Catalysis, 2013, 3, 1965-1975.	11.2	130
47	Role of Silanol Group in Sn-Beta Zeolite for Glucose Isomerization and Epimerization Reactions. ACS Catalysis, 2013, 3, 2294-2298.	11.2	128
48	Comparison of Homogeneous and Heterogeneous Catalysts for Glucoseâ€ŧoâ€Fructose Isomerization in Aqueous Media. ChemSusChem, 2013, 6, 2369-2376.	6.8	128
49	Mechanisms for High Selectivity in the Hydrodeoxygenation of 5-Hydroxymethylfurfural over PtCo Nanocrystals. ACS Catalysis, 2016, 6, 4095-4104.	11.2	124
50	Structural analysis of humins formed in the BrÃ,nsted acid catalyzed dehydration of fructose. Green Chemistry, 2018, 20, 997-1006.	9.0	123
51	Kinetics of Homogeneous BrÃ,nsted Acid Catalyzed Fructose Dehydration and 5-Hydroxymethyl Furfural Rehydration: A Combined Experimental and Computational Study. ACS Catalysis, 2014, 4, 259-267.	11.2	122
52	Physical Basis for the Formation and Stability of Silica Nanoparticles in Basic Solutions of Monovalent Cations. Langmuir, 2005, 21, 8960-8971.	3.5	120
53	Pyrolytic conversion of cellulose to fuels: levoglucosan deoxygenation via elimination and cyclization within molten biomass. Energy and Environmental Science, 2012, 5, 7864.	30.8	119
54	Hierarchical Multiscale Mechanism Development for Methane Partial Oxidation and Reforming and for Thermal Decomposition of Oxygenates on Rh. Journal of Physical Chemistry B, 2005, 109, 16819-16835.	2.6	116

#	Article	IF	CITATIONS
55	Dynamics of the Dissociation of Hydrogen on Stepped Platinum Surfaces Using the ReaxFF Reactive Force Field. Journal of Physical Chemistry B, 2006, 110, 4274-4282.	2.6	116
56	From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass. ACS Central Science, 2018, 4, 701-708.	11.3	116
57	Microreactor Modeling for Hydrogen Production from Ammonia Decomposition on Ruthenium. Industrial & Engineering Chemistry Research, 2004, 43, 2986-2999.	3.7	115
58	A Review of Multiscale Analysis: Examples from Systems Biology, Materials Engineering, and Other Fluid–Surface Interacting Systems. Advances in Chemical Engineering, 2005, 30, 1-61.	0.9	115
59	The chain length effect in pyrolysis: bridging the gap between glucose and cellulose. Green Chemistry, 2012, 14, 1284.	9.0	114
60	Tandem Lewis/BrÃ,nsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(<scp>iii</scp>) chloride and hydrochloric acid solution. Green Chemistry, 2015, 17, 4725-4735.	9.0	114
61	Converting fructose to 5-hydroxymethylfurfural: a quantum mechanics/molecular mechanics study of the mechanism and energetics. Carbohydrate Research, 2011, 346, 664-672.	2.3	112
62	Polypropylene Plastic Waste Conversion to Lubricants over Ru/TiO ₂ Catalysts. ACS Catalysis, 2021, 11, 8104-8115.	11.2	112
63	A Theoretical and Computational Analysis of Linear Free Energy Relations for the Estimation of Activation Energies. ACS Catalysis, 2012, 2, 1624-1634.	11.2	110
64	Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations. ChemSusChem, 2015, 8, 315-322.	6.8	109
65	First-Principles-Based Kinetic Monte Carlo Simulation of the Structure Sensitivity of the Water–Gas Shift Reaction on Platinum Surfaces. Journal of Physical Chemistry C, 2011, 115, 24750-24762.	3.1	108
66	Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems. Journal of Computational Physics, 2003, 186, 250-278.	3.8	107
67	Differentiation of O–H and C–H Bond Scission Mechanisms of Ethylene Glycol on Pt and Ni/Pt Using Theory and Isotopic Labeling Experiments. Journal of the American Chemical Society, 2011, 133, 7996-8004.	13.7	107
68	Coarse-grained stochastic processes for microscopic lattice systems. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 782-787.	7.1	106
69	Fluorescence confocal optical microscopy imaging of the grain boundary structure of zeolite MFI membranes made by secondary (seeded) growth. Journal of Membrane Science, 2001, 182, 103-109.	8.2	104
70	Formation and Structure of Self-Assembled Silica Nanoparticles in Basic Solutions of Organic and Inorganic Cations. Langmuir, 2005, 21, 5197-5206.	3.5	104
71	Kinetic and Thermodynamic Studies of Silica Nanoparticle Dissolution. Chemistry of Materials, 2007, 19, 4189-4197.	6.7	104
72	Cascade of Liquidâ€Phase Catalytic Transfer Hydrogenation and Etherification of 5â€Hydroxymethylfurfural to Potential Biodiesel Components over Lewis Acid Zeolites. ChemCatChem, 2014. 6. 508-513.	3.7	104

#	Article	IF	CITATIONS
73	Multiscale integration hybrid algorithms for homogeneous–heterogeneous reactors. AICHE Journal, 1997, 43, 3031-3041.	3.6	102
74	Diels–Alder cycloaddition of 2-methylfuran and ethylene for renewable toluene. Applied Catalysis B: Environmental, 2016, 180, 487-496.	20.2	102
75	Combined DFT, Microkinetic, and Experimental Study of Ethanol Steam Reforming on Pt. Journal of Physical Chemistry C, 2013, 117, 4691-4706.	3.1	101
76	Theoretical Approach To Predict the Stability of Supported Single-Atom Catalysts. ACS Catalysis, 2019, 9, 3289-3297.	11.2	101
77	Density Functional Theory-Derived Group Additivity and Linear Scaling Methods for Prediction of Oxygenate Stability on Metal Catalysts: Adsorption of Open-Ring Alcohol and Polyol Dehydrogenation Intermediates on Pt-Based Metals. Journal of Physical Chemistry C, 2010, 114, 20155-20166.	3.1	100
78	Pt catalysts for efficient aerobic oxidation of glucose to glucaric acid in water. Green Chemistry, 2016, 18, 3815-3822.	9.0	100
79	Fabrication of Single-Channel Catalytic Microburners:Â Effect of Confinement on the Oxidation of Hydrogen/Air Mixtures. Industrial & Engineering Chemistry Research, 2004, 43, 4833-4840.	3.7	96
80	Kinetic Regime Change in the Tandem Dehydrative Aromatization of Furan Diels–Alder Products. ACS Catalysis, 2015, 5, 2367-2375.	11.2	96
81	A C ₁ microkinetic model for methane conversion to syngas on Rh/Al ₂ O ₃ . AICHE Journal, 2009, 55, 993-1008.	3.6	95
82	Correlating extent of Pt–Ni bond formation with low-temperature hydrogenation of benzene and 1,3-butadiene over supported Pt/Ni bimetallic catalysts. Journal of Catalysis, 2010, 271, 239-250.	6.2	95
83	Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia. Jacs Au, 2021, 1, 1422-1434.	7.9	95
84	Liquidâ€Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid–Ru/C Catalysts. ChemSusChem, 2015, 8, 2046-2054.	6.8	93
85	Elucidating the Roles of Zeolite H-BEA in Aqueous-Phase Fructose Dehydration and HMF Rehydration. ACS Catalysis, 2013, 3, 1279-1291.	11.2	92
86	Identification of Descriptors for the CO Interaction with Metal Nanoparticles. Nano Letters, 2010, 10, 1041-1045.	9.1	91
87	The role of radical wall quenching in flame stability and wall heat flux: hydrogen-air mixtures. Combustion Theory and Modelling, 1998, 2, 515-530.	1.9	89
88	Challenges of and Insights into Acid-Catalyzed Transformations of Sugars. Journal of Physical Chemistry C, 2014, 118, 22815-22833.	3.1	88
89	Mechanistic Study of the Direct Hydrodeoxygenation of <i>m</i> Cresol over WO _{<i>x</i>(i>} -Decorated Pt/C Catalysts. ACS Catalysis, 2018, 8, 7749-7759.	11.2	87
90	Evolution of Self-Assembled Silicaâ^'Tetrapropylammonium Nanoparticles at Elevated Temperatures. Journal of Physical Chemistry B, 2005, 109, 12762-12771.	2.6	86

#	Article	IF	CITATIONS
91	<i>p-</i> Xylene Formation by Dehydrative Aromatization of a Diels–Alder Product in Lewis and BrÃ,nsted Acidic Zeolites. Journal of Physical Chemistry C, 2014, 118, 24415-24424.	3.1	85
92	Conjugation-Driven "Reverse Mars–van Krevelen―Type Radical Mechanism for Low-Temperature C–O Bond Activation. Journal of the American Chemical Society, 2016, 138, 8104-8113.	13.7	84
93	Biomass-Derived Butadiene by Dehydra-Decyclization of Tetrahydrofuran. ACS Sustainable Chemistry and Engineering, 2017, 5, 3732-3736.	6.7	84
94	Fundamentals of C–O bond activation on metal oxide catalysts. Nature Catalysis, 2019, 2, 269-276.	34.4	82
95	Overcoming stiffness in stochastic simulation stemming from partial equilibrium: A multiscale Monte Carlo algorithm. Journal of Chemical Physics, 2005, 123, 144114.	3.0	81
96	Recent Advances in the Photocatalytic Conversion of Biomass-Derived Furanic Compounds. ACS Catalysis, 2021, 11, 11336-11359.	11.2	81
97	Construction and optimization of complex surface-reaction mechanisms. AICHE Journal, 2000, 46, 2017-2029.	3.6	80
98	Thermal Management in Catalytic Microreactors. Industrial & Engineering Chemistry Research, 2006, 45, 76-84.	3.7	80
99	Correlating Ethylene Glycol Reforming Activity with In Situ EXAFS Detection of Ni Segregation in Supported NiPt Bimetallic Catalysts. ACS Catalysis, 2012, 2, 2290-2296.	11.2	80
100	A DFT study of furan hydrogenation and ring opening on Pd(111). Green Chemistry, 2014, 16, 736-747.	9.0	80
101	Site-Dependent Lewis Acidity of γ-Al ₂ O ₃ and Its Impact on Ethanol Dehydration and Etherification. Journal of Physical Chemistry C, 2014, 118, 12899-12907.	3.1	80
102	Silica Self-Assembly and Synthesis of Microporous and Mesoporous Silicates. Chemistry - A European Journal, 2006, 12, 2926-2934.	3.3	79
103	The effect of oxide acidity on HMF etherification. Catalysis Science and Technology, 2014, 4, 3074-3081.	4.1	79
104	Kinetics of faceting of crystals in growth, etching, and equilibrium. Physical Review B, 1993, 47, 4896-4909.	3.2	78
105	Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials. Nature Communications, 2020, 11, 1513.	12.8	77
106	Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles. Journal of Chemical Physics, 2003, 119, 9412-9427.	3.0	76
107	Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling. Journal of Chemical Physics, 2007, 127, 154716.	3.0	75
108	A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum. Industrial & Engineering Chemistry Research, 2007, 46, 5310-5324.	3.7	75

#	Article	IF	CITATIONS
109	Mechanistic Insights into Lewis Acid Metal Salt-Catalyzed Glucose Chemistry in Aqueous Solution. ACS Catalysis, 2016, 6, 1497-1504.	11.2	74
110	Simulations and experiments on the growth and microstructure of zeolite MFI films and membranes made by secondary growth. Microporous and Mesoporous Materials, 2001, 42, 191-203.	4.4	73
111	Kinetic Modeling of Pt Catalyzed and Computation-Driven Catalyst Discovery for Ethylene Glycol Decomposition. ACS Catalysis, 2011, 1, 1246-1256.	11.2	72
112	Solventless C–C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst. ACS Catalysis, 2017, 7, 3905-3915.	11.2	72
113	A Generalized Approach for Predicting Coverage-Dependent Reaction Parameters of Complex Surface Reactions:  Application to H2 Oxidation over Platinum. Journal of Physical Chemistry A, 1999, 103, 8101-8107.	2.5	71
114	Tungsten carbides as selective deoxygenation catalysts: experimental and computational studies of converting C3 oxygenates to propene. Green Chemistry, 2014, 16, 761-769.	9.0	71
115	Understanding solvent effects on adsorption and protonation in porous catalysts. Nature Communications, 2020, 11, 1060.	12.8	71
116	Single pot catalyst strategy to branched products via adhesive isomerization and hydrocracking of polyethylene over platinum tungstated zirconia. Applied Catalysis B: Environmental, 2021, 299, 120483.	20.2	71
117	CFD Simulations of Coupled, Countercurrent Combustor/Reformer Microdevices for Hydrogen Production. Industrial & Engineering Chemistry Research, 2005, 44, 4982-4992.	3.7	70
118	Patched bimetallic surfaces are active catalysts for ammonia decomposition. Nature Communications, 2015, 6, 8619.	12.8	70
119	Assessment of Overall Rate Expressions and Multiscale, Microkinetic Model Uniqueness via Experimental Data Injection: Ammonia Decomposition on Ru/l³-Al ₂ O ₃ for Hydrogen Production. Industrial & Engineering Chemistry Research, 2009, 48, 5255-5265.	3.7	69
120	Mechanism of Dehydration of Phenols on Noble Metals via First-Principles Microkinetic Modeling. ACS Catalysis, 2016, 6, 3047-3055.	11.2	69
121	lgnition and extinction of flames near surfaces: Combustion of CH4 in air. AICHE Journal, 1994, 40, 1005-1017.	3.6	68
122	Reactive Deposition of Metal Thin Films within Porous Supports from Supercritical Fluids. Chemistry of Materials, 2001, 13, 2023-2031.	6.7	68
123	BrÃ,nsted–Evans–Polanyi and Transition State Scaling Relations of Furan Derivatives on Pd(111) and Their Relation to Those of Small Molecules. ACS Catalysis, 2014, 4, 604-612.	11.2	68
124	A perspective on the modeling of biomass processing. Energy and Environmental Science, 2012, 5, 6703.	30.8	66
125	Ethanol Activation on Closed-Packed Surfaces. Industrial & Engineering Chemistry Research, 2015, 54, 4213-4225.	3.7	66
126	Chemoselective Hydrodeoxygenation of Carboxylic Acids to Hydrocarbons over Nitrogen-Doped Carbon–Alumina Hybrid Supported Iron Catalysts. ACS Catalysis, 2019, 9, 1564-1577.	11.2	66

8

#	Article	IF	CITATIONS
127	Insights into the isomerization of xylose to xylulose and lyxose by a Lewis acid catalyst. Carbohydrate Research, 2013, 368, 89-95.	2.3	65
128	Homogeneous Metal Salt Solutions for Biomass Upgrading and Other Select Organic Reactions. ACS Catalysis, 2019, 9, 9923-9952.	11.2	65
129	Hydrodeoxygenation of HMF over Pt/C in a continuous flow reactor. AICHE Journal, 2015, 61, 590-597.	3.6	64
130	Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans. ACS Central Science, 2016, 2, 820-824.	11.3	64
131	Derivation and Validation of Mesoscopic Theories for Diffusion of Interacting Molecules. Physical Review Letters, 2000, 85, 3898-3901.	7.8	63
132	Building large microkinetic models with first-principles× ³ accuracy at reduced computational cost. Chemical Engineering Science, 2015, 121, 190-199.	3.8	63
133	Deactivation of Pt/Al2O3 during propane oxidation at low temperatures: Kinetic regimes and platinum oxide formation. Journal of Catalysis, 2016, 337, 122-132.	6.2	63
134	Polyolefin plastic waste hydroconversion to fuels, lubricants, and waxes: a comparative study. Reaction Chemistry and Engineering, 2021, 7, 41-54.	3.7	61
135	Programmable heating and quenching for efficient thermochemical synthesis. Nature, 2022, 605, 470-476.	27.8	61
136	Insights into the Cr(<scp>iii</scp>) catalyzed isomerization mechanism of glucose to fructose in the presence of water using ab initio molecular dynamics. Physical Chemistry Chemical Physics, 2014, 16, 19564-19572.	2.8	59
137	Optimization of the facet structure of transition-metal catalysts applied to the oxygen reduction reaction. Nature Chemistry, 2019, 11, 449-456.	13.6	57
138	Time accelerated Monte Carlo simulations of biological networks using the binomial Â-leap method. Bioinformatics, 2005, 21, 2136-2137.	4.1	56
139	Methane steam reforming at microscales: Operation strategies for variable power output at millisecond contact times. AICHE Journal, 2009, 55, 180-191.	3.6	56
140	Microkinetic Modeling and Reduced Rate Expressions of Ethylene Hydrogenation and Ethane Hydrogenolysis on Platinum. Industrial & Engineering Chemistry Research, 2011, 50, 28-40.	3.7	56
141	A First Principlesâ€Based Microkinetic Model for the Conversion of Fructose to 5â€Hydroxymethylfurfural. ChemCatChem, 2012, 4, 504-511.	3.7	56
142	Intensification of steam reforming of natural gas: Choosing combustible fuel and reforming catalyst. Chemical Engineering Science, 2010, 65, 398-404.	3.8	55
143	Carbohydrate dehydration using porous catalysts. Current Opinion in Chemical Engineering, 2012, 1, 312-320.	7.8	55
144	Adsorption of Acid, Ester, and Ether Functional Groups on Pt: Fast Prediction of Thermochemical Properties of Adsorbed Oxygenates via DFT-Based Group Additivity Methods. Journal of Physical Chemistry C, 2012, 116, 1873-1886.	3.1	55

#	Article	IF	CITATIONS
145	Adipic Acid Production via Metal-Free Selective Hydrogenolysis of Biomass-Derived Tetrahydrofuran-2,5-Dicarboxylic Acid. ACS Catalysis, 2017, 7, 6619-6634.	11.2	55
146	DFT-driven multi-site microkinetic modeling of ethanol conversion to ethylene and diethyl ether on γ-Al2O3(1 1 1). Journal of Catalysis, 2015, 323, 121-131.	6.2	54
147	Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jetâ€fuel Ranged Alkanes over a Rheniumâ€Modified Iridium Catalyst. ChemSusChem, 2017, 10, 3225-3234.	6.8	54
148	The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance. ACS Catalysis, 2020, 10, 12666-12695.	11.2	54
149	An Efficient Reaction Pathway Search Method Applied to the Decomposition of Glycerol on Platinum. Journal of Physical Chemistry C, 2011, 115, 18707-18720.	3.1	53
150	Multiscale spatial Monte Carlo simulations: Multigriding, computational singular perturbation, and hierarchical stochastic closures. Journal of Chemical Physics, 2006, 124, 064110.	3.0	52
151	Millisecond Methane Steam Reforming Via Process and Catalyst Intensification. Chemical Engineering and Technology, 2008, 31, 1201-1209.	1.5	52
152	Dominant Reaction Pathways in the Catalytic Partial Oxidation of CH4 on Rh. Topics in Catalysis, 2009, 52, 1983-1988.	2.8	52
153	Multiscale Modeling Reveals Poisoning Mechanisms of MgO-Supported Au Clusters in CO Oxidation. Nano Letters, 2012, 12, 3621-3626.	9.1	52
154	A new approach to response surface development for detailed gas-phase and surface reaction kinetic model optimization. International Journal of Chemical Kinetics, 2003, 36, 94-106.	1.6	51
155	Computational Insights into the Role of Metal and Acid Sites in Bifunctional Metal/Zeolite Catalysts: A Case Study of Acetone Hydrogenation to 2-Propanol and Subsequent Dehydration to Propene. ACS Catalysis, 2016, 6, 123-133.	11.2	51
156	The effects of phase transitions, surface diffusion, and defects on surface catalyzed reactions: Fluctuations and oscillations. Journal of Chemical Physics, 1990, 93, 8306-8313.	3.0	50
157	Parameter Optimization of Molecular Models:Â Application to Surface Kinetics. Industrial & Engineering Chemistry Research, 2003, 42, 1174-1183.	3.7	50
158	Multiscale Model and Informatics-Based Optimal Design of Experiments: Application to the Catalytic Decomposition of Ammonia on Ruthenium. Industrial & Engineering Chemistry Research, 2008, 47, 6555-6567.	3.7	50
159	Computational Insight into the Effect of Sn-Beta Na Exchange and Solvent on Glucose Isomerization and Epimerization. ACS Catalysis, 2015, 5, 5256-5263.	11.2	50
160	Reaction Pathways of Biomassâ€Derived Oxygenates over Metals and Carbides: From Model Surfaces to Supported Catalysts. ChemCatChem, 2015, 7, 1402-1421.	3.7	50
161	Insights into the Early Stages of Metal Nanoparticle Formation via First-Principle Calculations: the Roles of Citrate and Water. Langmuir, 2008, 24, 7465-7473.	3.5	49
162	Fructose–Water–Dimethylsulfoxide Interactions by Vibrational Spectroscopy and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2012, 116, 11274-11283.	2.6	49

#	Article	IF	CITATIONS
163	Aqueous-phase fructose dehydration using BrÃ,nsted acid zeolites: Catalytic activity of dissolved aluminosilicate species. Applied Catalysis A: General, 2014, 469, 116-123.	4.3	48
164	Role of Lewis and BrÃ,nsted Acidity in Metal Chloride Catalysis in Organic Media: Reductive Etherification of Furanics. ACS Catalysis, 2017, 7, 7363-7370.	11.2	48
165	Reductive catalytic fractionation of agricultural residue and energy crop lignin and application of lignin oil in antimicrobials. Green Chemistry, 2020, 22, 7435-7447.	9.0	48
166	Structures of small metal clusters. I. Low temperature behavior. Journal of Chemical Physics, 1992, 96, 6880-6890.	3.0	47
167	Effect of errors in linear scaling relations and BrÃุnsted–Evans–Polanyi relations on activity and selectivity maps. Journal of Catalysis, 2016, 338, 273-283.	6.2	47
168	A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation. Computer Physics Communications, 2020, 247, 106864.	7.5	47
169	Modeling Ignition of Catalytic Reactors with Detailed Surface Kinetics and Transport:Â Oxidation of H2/Air Mixtures over Platinum Surfaces. Industrial & Engineering Chemistry Research, 1997, 36, 2558-2567.	3.7	46
170	Silica Nanoparticle Formation in the TPAOHâ^'TEOSâ^'H2O System:  A Population Balance Model. Journal of Physical Chemistry B, 2006, 110, 3098-3108.	2.6	46
171	Equivalence of on-lattice stochastic chemical kinetics with the well-mixed chemical master equation in the limit of fast diffusion. Computers and Chemical Engineering, 2011, 35, 2602-2610.	3.8	46
172	A review of microwave-assisted process intensified multiphase reactors. Chemical Engineering Journal, 2022, 430, 133183.	12.7	46
173	Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules. Journal of Chemical Physics, 2004, 121, 11420.	3.0	45
174	Extending the region of stable homogeneous micro-combustion through forced unsteady operation. Proceedings of the Combustion Institute, 2007, 31, 3293-3300.	3.9	45
175	Theoretical and Experimental Studies of C–C versus C–O Bond Scission of Ethylene Glycol Reaction Pathways via Metal-Modified Molybdenum Carbides. ACS Catalysis, 2014, 4, 1409-1418.	11.2	45
176	Physicochemical Characterization of Silicalite-1 Surface and Its Implications on Crystal Growth. Langmuir, 2003, 19, 4619-4626.	3.5	44
177	Molecular Dynamics Studies on the Role of Tetramethylammonium Cations in the Stability of the Silica Octamers Si8in Solution. Journal of Physical Chemistry B, 2005, 109, 10429-10434.	2.6	44
178	Understanding Acidity of Molten Salt Hydrate Media for Cellulose Hydrolysis by Combining Kinetic Studies, Electrolyte Solution Modeling, Molecular Dynamics Simulations, and ¹³ C NMR Experiments. ACS Catalysis, 2019, 9, 10551-10561.	11.2	44
179	Renewable lubricants with tailored molecular architecture. Science Advances, 2019, 5, eaav5487.	10.3	44
180	Stability of heterogeneous single-atom catalysts: a scaling law mapping thermodynamics to kinetics. Npj Computational Materials, 2020, 6, .	8.7	44

#	Article	IF	CITATIONS
181	Multiscale model for epitaxial growth of films: Growth mode transition. Physical Review B, 2001, 64, .	3.2	43
182	Multiscale modeling for emergent behavior, complexity, and combinatorial explosion. AICHE Journal, 2012, 58, 1314-1325.	3.6	43
183	<pre>xmins:mml= http://www.w3.org/1998/Wath/Wath/Wath/Wath/Wath/Wath/Wath/Wath</pre>	> 8/8 nml:mi	a ul2 >
184	Adsorption of the Compounds Encountered in Monosaccharide Dehydration in Zeolite Beta. Langmuir, 2013, 29, 6597-6605.	3.5	42
185	Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells. Nature Communications, 2017, 8, 418.	12.8	42
186	Ultrafast flow chemistry for the acid-catalyzed conversion of fructose. Energy and Environmental Science, 2019, 12, 2463-2475.	30.8	42
187	The Future is Garbage: Repurposing of Food Waste to an Integrated Biorefinery. ACS Sustainable Chemistry and Engineering, 2020, 8, 8124-8136.	6.7	42
188	High vs. low temperature reforming for hydrogen production via microtechnology. Chemical Engineering Science, 2009, 64, 4856-4865.	3.8	41
189	Reaction Pathways and Intermediates in Selective Ring Opening of Biomass-Derived Heterocyclic Compounds by Iridium. ACS Catalysis, 2016, 6, 7002-7009.	11.2	41
190	Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations. Biophysical Chemistry, 2006, 121, 194-208.	2.8	40
191	Millisecond Production of Hydrogen from Alternative, High Hydrogen Density Fuels in a Cocurrent Multifunctional Microreactor. Industrial & Engineering Chemistry Research, 2009, 48, 1749-1760.	3.7	40
192	On the BrÃ,nsted Acid atalyzed Homogeneous Hydrolysis of Furans. ChemSusChem, 2013, 6, 2066-2068.	6.8	40
193	Recent advances in understanding the pH dependence of the hydrogen oxidation and evolution reactions. Journal of Catalysis, 2018, 367, 328-331.	6.2	40
194	Kinetic regimes in the tandem reactions of H-BEA catalyzed formation of p-xylene from dimethylfuran. Catalysis Science and Technology, 2016, 6, 178-187.	4.1	39
195	General Acid-Type Catalysis in the Dehydrative Aromatization of Furans to Aromatics in H-[Al]-BEA, H-[Fe]-BEA, H-[Ga]-BEA, and H-[B]-BEA Zeolites. Journal of Physical Chemistry C, 2017, 121, 13666-13679.	3.1	39
196	Molybdenum Oxide-Modified Iridium Catalysts for Selective Production of Renewable Oils for Jet and Diesel Fuels and Lubricants. ACS Catalysis, 2019, 9, 7679-7689.	11.2	39
197	Catalysis Center for Energy Innovation for Biomass Processing: Research Strategies and Goals. Catalysis Letters, 2010, 140, 77-84.	2.6	38
198	Alcohol Adsorption onto Silicalite from Aqueous Solution. Journal of Physical Chemistry C, 2011, 115, 18659-18669.	3.1	37

#	Article	IF	CITATIONS
199	Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights. Journal of Physical Chemistry C, 2012, 116, 5116-5120.	3.1	37
200	Solvent-tuned hydrophobicity for faujasite-catalyzed cycloaddition of biomass-derived dimethylfuran for renewable p-xylene. Green Chemistry, 2014, 16, 4086.	9.0	37
201	DFT Study of the Conversion of Furfuryl Alcohol to 2-Methylfuran on RuO ₂ (110). Journal of Physical Chemistry C, 2015, 119, 5938-5945.	3.1	37
202	First-Principles Kinetic and Spectroscopic Insights into Single-Atom Catalysis. ACS Catalysis, 2019, 9, 5002-5010.	11.2	37
203	Scaleup of a Single-Mode Microwave Reactor. Industrial & Engineering Chemistry Research, 2020, 59, 2516-2523.	3.7	36
204	Spectral Methods for Mesoscopic Models of Pattern Formation. Journal of Computational Physics, 2001, 173, 364-390.	3.8	35
205	Computational modeling reveals molecular details of epidermal growth factor binding. BMC Cell Biology, 2005, 6, 41.	3.0	35
206	Controlling Homogeneous Chemistry in Homogeneousâ^'Heterogeneous Reactors: Application to Propane Combustion. Industrial & Engineering Chemistry Research, 2009, 48, 5962-5968.	3.7	35
207	Adsorption in zeolites using mechanically embedded ONIOM clusters. Physical Chemistry Chemical Physics, 2016, 18, 26094-26106.	2.8	35
208	Acylation of methylfuran with BrÃ,nsted and Lewis acid zeolites. Applied Catalysis A: General, 2018, 564, 90-101.	4.3	35
209	Catalytic resonance theory: parallel reaction pathway control. Chemical Science, 2020, 11, 3501-3510.	7.4	35
210	Modulating the dynamics of BrÃ,nsted acid sites on PtWOx inverse catalyst. Nature Catalysis, 2022, 5, 144-153.	34.4	35
211	Experimental and theoretical studies of ammonia decomposition activity on Fe-Pt, Co-Pt, and Cu-Pt bimetallic surfaces. Journal of Chemical Physics, 2011, 134, 184701.	3.0	34
212	Ringâ€Opening Reaction of Furfural and Tetrahydrofurfuryl Alcohol on Hydrogenâ€Predosed Iridium(1 1 and Cobalt/Iridium(1 1 1) Surfaces. ChemCatChem, 2017, 9, 1701-1707.	1) 3.7	34
213	Tandem Diels–Alder Reaction of Dimethylfuran and Ethylene and Dehydration to <i>para</i> â€Xylene Catalyzed by Zeotypic Lewis Acids. ChemCatChem, 2017, 9, 2523-2535.	3.7	34
214	Distribution of open sites in Sn-Beta zeolite. Microporous and Mesoporous Materials, 2017, 245, 45-50.	4.4	34
215	Nanoporous Cu–Al–Co Alloys for Selective Furfural Hydrodeoxygenation to 2-Methylfuran. Industrial & Engineering Chemistry Research, 2017, 56, 3866-3872.	3.7	34
216	Effect of Substitutionally Doped Graphene on the Activity of Metal Nanoparticle Catalysts for the Hydrogen Oxidation Reaction. ACS Catalysis, 2019, 9, 1129-1139.	11.2	34

#	Article	IF	CITATIONS
217	Temperature Homogeneity under Selective and Localized Microwave Heating in Structured Flow Reactors. Industrial & Engineering Chemistry Research, 2021, 60, 6835-6847.	3.7	34
218	From Microscopic Interactions to Macroscopic Laws of Cluster Evolution. Physical Review Letters, 2000, 84, 1511-1514.	7.8	33
219	Heterogeneities in EGF receptor density at the cell surface can lead to concave up scatchard plot of EGF binding. FEBS Letters, 2005, 579, 3043-3047.	2.8	33
220	Novel micromixers driven by flow instabilities: Application to post-reactors. AICHE Journal, 2005, 51, 3193-3204.	3.6	32
221	Reactive adsorption for the selective dehydration of sugars to furans: Modeling and experiments. AICHE Journal, 2013, 59, 3378-3390.	3.6	32
222	Production of high-yield short-chain oligomers from cellulose <i>via</i> selective hydrolysis in molten salt hydrates and separation. Green Chemistry, 2019, 21, 5030-5038.	9.0	32
223	What Controls Au Nanoparticle Dispersity during Growth?. Nano Letters, 2010, 10, 3408-3413.	9.1	31
224	Design Principles of Heteroepitaxial Bimetallic Catalysts. ACS Catalysis, 2013, 3, 2248-2255.	11.2	31
225	Experiments and computations of microfluidic liquid–liquid flow patterns. Reaction Chemistry and Engineering, 2020, 5, 39-50.	3.7	31
226	Theoretical Study of Ethylene Hydroformylation on Atomically Dispersed Rh/Al ₂ O ₃ Catalysts: Reaction Mechanism and Influence of the ReO _{<i>x</i>} Promoter. ACS Catalysis, 2021, 11, 9506-9518.	11.2	31
227	NEXTorch: A Design and Bayesian Optimization Toolkit for Chemical Sciences and Engineering. Journal of Chemical Information and Modeling, 2021, 61, 5312-5319.	5.4	31
228	Self-Assembly and Phase Behavior of Germanium Oxide Nanoparticles in Basic Aqueous Solutions. Langmuir, 2007, 23, 2784-2791.	3.5	30
229	Scale-out of Microreactor Stacks for Portable and Distributed Processing: Coupling of Exothermic and Endothermic Processes for Syngas Production. Industrial & Engineering Chemistry Research, 2010, 49, 10942-10955.	3.7	30
230	Molecular Screening of Alcohol and Polyol Adsorption onto MFI-Type Zeolites. Langmuir, 2012, 28, 4491-4499.	3.5	30
231	Insights into the Ringâ€Opening of Biomassâ€Derived Furanics over Carbonâ€Supported Ruthenium. ChemSusChem, 2016, 9, 3113-3121.	6.8	30
232	Ethane Dehydrogenation on Single and Dual Centers of Ga-modified γ-Al ₂ O ₃ . ACS Catalysis, 2021, 11, 1380-1391.	11.2	30
233	Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction. Science Advances, 2022, 8, eabj7523.	10.3	30
234	Roles of thermal and radical quenching in emissions of wall-stabilized hydrogen flames. AICHE Journal, 1998, 44, 2025-2034.	3.6	29

#	Article	IF	CITATIONS
235	Stochastic simulations of ErbB homo and heterodimerisation: potential impacts of receptor conformational state and spatial segregation. IET Systems Biology, 2008, 2, 256-272.	1.5	29
236	Ring Activation of Furanic Compounds on Ruthenium-Based Catalysts. Journal of Physical Chemistry C, 2015, 119, 6075-6085.	3.1	29
237	Thermochemistry of gas-phase and surface species <i>via</i> LASSO-assisted subgraph selection. Reaction Chemistry and Engineering, 2018, 3, 454-466.	3.7	29
238	Validation of mesoscopic theory and its application to computing concentration dependent diffusivities. Journal of Chemical Physics, 2001, 115, 11278-11288.	3.0	28
239	Initial Stages of Self-Organization of Silicaâ^'Alumina Gels in Zeolite Synthesis. Langmuir, 2007, 23, 4532-4540.	3.5	28
240	Growth Mechanisms of Metal Nanoparticles via First Principles. Physical Review Letters, 2009, 102, 155505.	7.8	28
241	A Combined DFT and Statistical Mechanics Study for the CO Oxidation on the Au ₁₀ ^{–1} Cluster. Journal of Physical Chemistry C, 2011, 115, 20192-20200.	3.1	28
242	Group Additivity and Modified Linear Scaling Relations for Estimating Surface Thermochemistry on Transition Metal Surfaces: Application to Furanics. Journal of Physical Chemistry C, 2015, 119, 10417-10426.	3.1	28
243	Solvent selection for biphasic extraction of 5-hydroxymethylfurfural <i>via</i> multiscale modeling and experiments. Green Chemistry, 2020, 22, 8699-8712.	9.0	28
244	One-step lignocellulose depolymerization and saccharification to high sugar yield and less condensed isolated lignin. Green Chemistry, 2021, 23, 1200-1211.	9.0	28
245	A review of thermal and thermocatalytic valorization of food waste. Green Chemistry, 2021, 23, 2806-2833.	9.0	28
246	Applications of Artificial Intelligence and Machine Learning Algorithms to Crystallization. Chemical Reviews, 2022, 122, 13006-13042.	47.7	28
247	Structures of small metal clusters. II. Phase transitions and isomerization. Journal of Chemical Physics, 1992, 96, 6891-6901.	3.0	27
248	Bifurcation Behavior of Premixed Hydrogen/Air Mixtures in a Continuous Stirred Tank Reactor. Combustion Science and Technology, 1995, 109, 347-371.	2.3	27
249	Bifurcation Analysis of Liesegang Ring Pattern Formation. Physical Review Letters, 2004, 92, 088301.	7.8	27
250	Group Additivity for Estimating Thermochemical Properties of Furanic Compounds on Pd(111). Industrial & Engineering Chemistry Research, 2014, 53, 11929-11938.	3.7	27
251	Group Additivity for Aqueous Phase Thermochemical Properties of Alcohols on Pt(111). Journal of Physical Chemistry C, 2017, 121, 21510-21519.	3.1	27
252	Dehydra-Decyclization of Tetrahydrofuran on H-ZSM5: Mechanisms, Pathways, and Transition State Entropy. ACS Catalysis, 2019, 9, 10279-10293.	11.2	27

#	Article	IF	CITATIONS
253	Catalytic production of renewable lubricant base oils from bio-based 2-alkylfurans and enals. Green Chemistry, 2019, 21, 3606-3614.	9.0	27
254	Finite-Temperature Structures of Supported Subnanometer Catalysts Inferred <i>via</i> Statistical Learning and Genetic Algorithm-Based Optimization. ACS Nano, 2020, 14, 13995-14007.	14.6	27
255	Understanding the differences between microporous and mesoporous synthesis through the phase behavior of silica. Microporous and Mesoporous Materials, 2006, 90, 102-111.	4.4	26
256	Microscopic Simulation of Membrane Molecule Diffusion on Corralled Membrane Surfaces. Biophysical Journal, 2008, 94, 1551-1564.	0.5	26
257	Thermodynamics of Silica Nanoparticle Self-Assembly in Basic Solutions of Monovalent Cations. Journal of Physical Chemistry C, 2008, 112, 14754-14761.	3.1	26
258	Liquid-phase dehydration of propylene glycol using solid-acid catalysts. Applied Catalysis A: General, 2012, 449, 59-68.	4.3	26
259	Adsorption of HMF from Water/DMSO Solutions onto Hydrophobic Zeolites: Experiment and Simulation. ChemSusChem, 2014, 7, 236-244.	6.8	26
260	Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid. Catalysis Science and Technology, 2018, 8, 2661-2671.	4.1	26
261	Direct speciation methods to quantify catalytically active species of AlCl ₃ in glucose isomerization. RSC Advances, 2018, 8, 17101-17109.	3.6	26
262	Branched Bioâ€Lubricant Base Oil Production through Aldol Condensation. ChemSusChem, 2019, 12, 4780-4785.	6.8	26
263	Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences. Science Advances, 2020, 6, .	10.3	26
264	Coupled Stochastic Spatial and Non-Spatial Simulations of ErbB1 Signaling Pathways Demonstrate the Importance of Spatial Organization in Signal Transduction. PLoS ONE, 2009, 4, e6316.	2.5	26
265	Catalysis at the sub-nanoscale: complex CO oxidation chemistry on a few Au atoms. Catalysis Science and Technology, 2015, 5, 134-141.	4.1	25
266	Inhibition of Xylene Isomerization in the Production of Renewable Aromatic Chemicals from Biomass-Derived Furans. ACS Catalysis, 2016, 6, 2076-2088.	11.2	25
267	Effect of oxide support surface area on hydrogenation activity: Pt/Ni bimetallic catalysts supported on low and high surface area Al2O3 and ZrO2. Applied Catalysis A: General, 2011, 408, 87-95.	4.3	24
268	Enhancing stability in parallel plate microreactor stacks for syngas production. Chemical Engineering Science, 2011, 66, 1051-1059.	3.8	24
269	Efficient gradient estimation using finite differencing and likelihood ratios for kinetic Monte Carlo simulations. Journal of Computational Physics, 2012, 231, 7170-7186.	3.8	24
270	Tuning cellulose pyrolysis chemistry: selective decarbonylation via catalyst-impregnated pyrolysis. Catalysis Science and Technology, 2014, 4, 3822-3825.	4.1	24

#	Article	IF	CITATIONS
271	A Review of Biorefinery Separations for Bioproduct Production via Thermocatalytic Processing. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 115-137.	6.8	24
272	Acceleration and sensitivity analysis of lattice kinetic Monte Carlo simulations using parallel processing and rate constant rescaling. Journal of Chemical Physics, 2017, 147, 164103.	3.0	24
273	The origin of selectivity in the conversion of glucose to fructose and mannose in Sn-BEA and Na-exchanged Sn-BEA zeolites. Journal of Catalysis, 2017, 355, 11-16.	6.2	24
274	Intensified microwave-assisted heterogeneous catalytic reactors for sustainable chemical manufacturing. Chemical Engineering Journal, 2021, 420, 130476.	12.7	24
275	Catalytic resonance of ammonia synthesis by simulated dynamic ruthenium crystal strain. Science Advances, 2022, 8, eabl6576.	10.3	24
276	Coarse-grained kinetic Monte Carlo models: Complex lattices, multicomponent systems, and homogenization at the stochastic level. Journal of Chemical Physics, 2008, 129, 184101.	3.0	23
277	Microkinetic modeling of the fast selective catalytic reduction of nitrogen oxide with ammonia on H-ZSM5 based on first principles. Journal of Catalysis, 2011, 283, 178-191.	6.2	23
278	Microkinetic modeling of Pt-catalyzed ethylene glycol steam reforming. Applied Catalysis A: General, 2012, 431-432, 18-24.	4.3	23
279	Error estimates in semi-empirical estimation methods of surface reactions. Journal of Catalysis, 2013, 297, 202-216.	6.2	23
280	Scaling relationships and theory for vibrational frequencies of adsorbates on transition metal surfaces. Nature Communications, 2017, 8, 1842.	12.8	23
281	Microkinetic Modeling and Reduced Rate Expression of the Water–Gas Shift Reaction on Nickel. Industrial & Engineering Chemistry Research, 2018, 57, 10269-10280.	3.7	23
282	Partial oxidation of light alkanes in short contact time microreactors. Catalysis, 0, , 98-137.	1.0	23
283	Hierarchical Reduced Models for Catalytic Combustion: H2/Air Mixtures Near Platinum Surfaces. Combustion Science and Technology, 1997, 129, 243-275.	2.3	22
284	Comparison of ignition strategies for catalytic microburners. Proceedings of the Combustion Institute, 2009, 32, 3027-3034.	3.9	22
285	Ammonia decomposition activity on monolayer Ni supported on Ru, Pt and WC substrates. Surface Science, 2011, 605, 2055-2060.	1.9	22
286	Correlating the Surface Chemistry of C ₂ and C ₃ Aldoses with a C ₆ Sugar: Reaction of Glucose, Glyceraldehyde, and Glycolaldehyde on Pd(111). Journal of Physical Chemistry C, 2012, 116, 18891-18898.	3.1	22
287	Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory. BMC Bioinformatics, 2013, 14, 311.	2.6	22
288	Operation and Optimization of Microwave-Heated Continuous-Flow Microfluidics. Industrial & amp; Engineering Chemistry Research, 2020, 59, 10418-10427.	3.7	22

#	Article	IF	CITATIONS
289	Process Systems Engineering Perspective on the Design of Materials and Molecules. Industrial & Engineering Chemistry Research, 2021, 60, 5194-5206.	3.7	22
290	A hybrid multiscale Monte Carlo algorithm (HyMSMC) to cope with disparity in time scales and species populations in intracellular networks. BMC Bioinformatics, 2007, 8, 175.	2.6	21
291	Effect of oxide supports in stabilizing desirable Pt–Ni bimetallic structures for hydrogenation and reforming reactions. Physical Chemistry Chemical Physics, 2013, 15, 12156.	2.8	21
292	Effect of local metal microstructure on adsorption on bimetallic surfaces: Atomic nitrogen on Ni/Pt(111). Journal of Chemical Physics, 2013, 138, 174702.	3.0	21
293	Lattice Convolutional Neural Network Modeling of Adsorbate Coverage Effects. Journal of Physical Chemistry C, 2019, 123, 18951-18959.	3.1	21
294	Phosphonateâ€Modified UiOâ€66 BrÃ,nsted Acid Catalyst and Its Use in Dehydraâ€Decyclization of 2â€Methyltetrahydrofuran to Pentadienes. Angewandte Chemie - International Edition, 2020, 59, 13260-13266.	13.8	21
295	Innovations Toward the Valorization of Plastics Waste. Annual Review of Materials Research, 2022, 52, 249-280.	9.3	21
296	Temporal acceleration of spatially distributed kinetic Monte Carlo simulations. Journal of Computational Physics, 2006, 211, 596-615.	3.8	20
297	Active learning-driven quantitative synthesis–structure–property relations for improving performance and revealing active sites of nitrogen-doped carbon for the hydrogen evolution reaction. Reaction Chemistry and Engineering, 2020, 5, 2134-2147.	3.7	20
298	Liquid–Liquid Microfluidic Flows for Ultrafast 5-Hydroxymethyl Furfural Extraction. Industrial & Engineering Chemistry Research, 2021, 60, 3723-3735.	3.7	20
299	Ethylene production by direct conversion of methane over isolated single active centers. Chemical Engineering Journal, 2021, 420, 130493.	12.7	20
300	From Density Functional Theory to Microchemical Device Homogenization: Model Prediction of Hydrogen Production For Portable Fuel Cells. International Journal for Multiscale Computational Engineering, 2004, 2, 221-238.	1.2	20
301	Molecular Dynamics Study of the Stabilization of the Silica Hexamer Si6O156-in Aqueous and Methanolic Solutions. Journal of Physical Chemistry B, 2008, 112, 7-10.	2.6	19
302	Microkinetic Modeling of Ethane Total Oxidation on Pt. Industrial & Engineering Chemistry Research, 2014, 53, 10051-10058.	3.7	19
303	Growth kinetics of humins studied <i>via</i> X-ray scattering. Green Chemistry, 2020, 22, 2301-2309.	9.0	19
304	Potential of Mean Force for Tetramethylammonium Binding to Cagelike Oligosilicates in Aqueous Solution. Journal of the American Chemical Society, 2006, 128, 16138-16147.	13.7	18
305	The Effects of the MgO Support and Alkali Doping on the CO Interaction with Au. Journal of Physical Chemistry C, 2009, 113, 7329-7335.	3.1	18
306	Understanding mixing of Ni and Pt in the Ni/Pt(111) bimetallic catalyst via molecular simulation and experiments. Journal of Chemical Physics, 2010, 133, 224503.	3.0	18

#	Article	IF	CITATIONS
307	Group Additivity for Thermochemical Property Estimation of Lignin Monomers on Pt(111). Journal of Physical Chemistry C, 2016, 120, 19234-19241.	3.1	18
308	Extraction of Furfural and Furfural/5-Hydroxymethylfurfural from Mixed Lignocellulosic Biomass-Derived Feedstocks. ACS Sustainable Chemistry and Engineering, 2021, 9, 7489-7498.	6.7	18
309	Intensified reactive extraction for the acid-catalyzed conversion of fructose to 5-hydroxymethyl furfural. Chemical Engineering Journal, 2022, 428, 132556.	12.7	18
310	Plasma technology for lignocellulosic biomass conversion toward an electrified biorefinery. Green Chemistry, 2022, 24, 2680-2721.	9.0	18
311	Kinetically driven instabilities and selectivities in methane oxidation. AICHE Journal, 1997, 43, 2083-2095.	3.6	17
312	High-Temperature Decomposition of BrÃ,nsted Acid Sites in Gallium-Substituted Zeolites. Journal of Physical Chemistry C, 2010, 114, 19395-19405.	3.1	17
313	Cooperative Catalysis by Surface Lewis Acid/Silanol for Selective Fructose Etherification on Sn-SPP Zeolite. ACS Catalysis, 2018, 8, 9056-9065.	11.2	17
314	Products in methane combustion near surfaces. AICHE Journal, 1994, 40, 1018-1025.	3.6	16
315	Operation regimes in catalytic combustion: H2/air mixtures near Pt. AICHE Journal, 1998, 44, 2035-2043.	3.6	16
316	Modeling Silica Nanoparticle Dissolution in TPAOHâ^'TEOSâ^'H2O Solutions. Journal of Physical Chemistry C, 2008, 112, 14769-14775.	3.1	16
317	Temporal coarse-graining of microscopic-lattice kinetic Monte Carlo simulations viaï"leaping. Physical Review E, 2008, 78, 046713.	2.1	16
318	Comparison of Ethylene Glycol Steam Reforming Over Pt and NiPt Catalysts on Various Supports. Topics in Catalysis, 2013, 56, 1644-1650.	2.8	16
319	Selective hydrodeoxygenation of tartaric acid to succinic acid. Catalysis Science and Technology, 2017, 7, 4944-4954.	4.1	16
320	Hydrodeoxygenation of m-Cresol Over Pt-WOx/C Using H2 Generated In Situ by n-Hexane Dehydrogenation. Catalysis Letters, 2020, 150, 913-921.	2.6	16
321	Surface chemistry dictates stability and oxidation state of supported single metal catalyst atoms. Chemical Science, 2020, 11, 1469-1477.	7.4	16
322	Multiscale modeling of microwave-heated multiphase systems. Chemical Engineering Journal, 2020, 397, 125262.	12.7	16
323	The roles of supersaturation, terrace width, and impurities on the formation of macrosteps on crystal surfaces using the terrace-ledge-kink model. Surface Science, 1992, 262, 359-370.	1.9	15
324	Modeling of zeolite L crystallization using continuum time Monte Carlo simulations. Journal of Chemical Physics, 1999, 111, 2143-2150.	3.0	15

#	Article	IF	CITATIONS
325	Spatially adaptive grand canonical ensemble Monte Carlo simulations. Physical Review E, 2005, 71, 026702.	2.1	15
326	Systems tasks in nanotechnology via hierarchical multiscale modeling: Nanopattern formation in heteroepitaxy. Chemical Engineering Science, 2007, 62, 4852-4863.	3.8	15
327	On the oligomerization mechanism of BrÃ,nsted acid-catalyzed conversion of furans to diesel-range fuels. Applied Catalysis A: General, 2014, 485, 118-122.	4.3	15
328	Methyl-ligated tin silsesquioxane catalyzed reactions of glucose. Journal of Catalysis, 2016, 341, 62-71.	6.2	15
329	Cost and energy efficient cyclic separation of 5-hydroxymethyl furfural from an aqueous solution. Green Chemistry, 2021, 23, 4008-4023.	9.0	15
330	Experimental Insights into the Coupling of Methane Combustion and Steam Reforming in a Catalytic Plate Reactor in Transient Mode. Industrial & Engineering Chemistry Research, 2021, 60, 196-209.	3.7	15
331	A Complete Pressureâ^'Temperature Diagram for Air Oxidation of Hydrogen in a Continuous-Flow Stirred Tank Reactor. Journal of Physical Chemistry A, 1999, 103, 7990-7999.	2.5	14
332	Multiscale hybrid modeling of film deposition within porous substrates. AICHE Journal, 2004, 50, 684-695.	3.6	14
333	Poisoning of Ru/C by homogeneous BrÃ,nsted acids in hydrodeoxygenation of 2,5-dimethylfuran via catalytic transfer hydrogenation. Applied Catalysis A: General, 2017, 542, 327-335.	4.3	14
334	Multiscale Modeling Combined with Active Learning for Microstructure Optimization of Bifunctional Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 6146-6154.	3.7	14
335	Microwave heating of slurries. Chemical Engineering Journal, 2021, 417, 127892.	12.7	14
336	Real-time dynamics and structures of supported subnanometer catalysts via multiscale simulations. Nature Communications, 2021, 12, 5430.	12.8	14
337	Multiscale modeling of hydrogenolysis of ethane and propane on Ru(0001): Implications for plastics recycling. Applied Catalysis B: Environmental, 2022, 316, 121597.	20.2	14
338	The role of macroscopic transport phenomena in film microstructure during epitaxial growth. Applied Physics Letters, 1999, 74, 2797-2799.	3.3	13
339	Spontaneous Formation of Periodically Patterned Deposits by Chemical Vapor Deposition. Journal of the American Chemical Society, 2000, 122, 12864-12865.	13.7	13
340	A Fast Approach to Predictive Models: NO-Oxidation in Exhaust Gas Aftertreatment Systems. Topics in Catalysis, 2009, 52, 1925-1928.	2.8	13
341	Density Functional Theory Study of Methane Oxidation and Reforming on Pt(111) and Pt(211). Industrial & amp; Engineering Chemistry Research, 0, , 120918084645004.	3.7	13
342	Steady state likelihood ratio sensitivity analysis for stiff kinetic Monte Carlo simulations. Journal of Chemical Physics, 2015, 142, 044108.	3.0	13

#	Article	IF	CITATIONS
343	Kinetic Studies of Acid Hydrolysis of Food Waste-Derived Saccharides. Industrial & Engineering Chemistry Research, 2018, 57, 17365-17374.	3.7	13
344	Catalytic Hydrotreatment of Humins to Bioâ€Oil in Methanol over Supported Metal Catalysts. ChemSusChem, 2018, 11, 3609-3617.	6.8	13
345	Reaction Network Viewer (ReNView): An open-source framework for reaction path visualization of chemical reaction systems. SoftwareX, 2020, 11, 100442.	2.6	13
346	Fast microflow kinetics and acid catalyst deactivation in glucose conversion to 5-hydroxymethylfurfural. Reaction Chemistry and Engineering, 2021, 6, 152-164.	3.7	13
347	Production of renewable oleo-furan surfactants by cross-ketonization of biomass-derived furoic acid and fatty acids. Catalysis Science and Technology, 2021, 11, 2762-2769.	4.1	13
348	Predicting the adsorption behavior in bulk from metal clusters. Chemical Physics Letters, 2011, 518, 99-103.	2.6	12
349	Oxidation of aromatic oxygenates for the production of terephthalic acid. Applied Catalysis A: General, 2018, 552, 98-104.	4.3	12
350	Microkinetic modeling of aqueous phase biomass conversion: Application to ethylene glycol reforming. Chemical Engineering Science, 2019, 197, 415-418.	3.8	12
351	Spectroscopic Probe Molecule Selection Using Quantum Theory, First-Principles Calculations, and Machine Learning. ACS Nano, 2020, 14, 17295-17307.	14.6	12
352	Experimental data-driven reaction network identification and uncertainty quantification of CO2-assisted ethane dehydrogenation over Ga2O3/Al2O3. Chemical Engineering Science, 2021, 237, 116534.	3.8	12
353	Learning Chemistry of Complex Reaction Systems via a Python First-Principles Reaction Rule Stencil (pReSt) Generator. Journal of Chemical Information and Modeling, 2021, 61, 3431-3441.	5.4	12
354	Chemical Kinetics Bayesian Inference Toolbox (CKBIT). Computer Physics Communications, 2021, 265, 107989.	7.5	12
355	Comparison of small metal clusters: Ni, Pd, Pt, Cu, Ag, Au. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1993, 26, 156-158.	1.0	11
356	Homogenization of mesoscopic theories: Effective properties of model membranes. AICHE Journal, 2002, 48, 1083-1092.	3.6	11
357	Molecular dynamics of hydrogen dissociation on an oxygen covered Pt(111) surface. Journal of Chemical Physics, 2008, 128, 154708.	3.0	11
358	Parallelization of tau-leap coarse-grained Monte Carlo simulations on GPUs. , 2010, , .		11
359	Hybrid Quantum Mechanics/Molecular Mechanics-Based Molecular Dynamics Simulation of Acid-Catalyzed Dehydration of Polyols in Liquid Water. Journal of Physical Chemistry A, 2011, 115, 8816-8821.	2.5	11
360	Catalytic Adipic Acid Production on Zeolites from Biomass-Derived Tetrahydrofuran-2,5-dicarboxylic Acid. ACS Applied Energy Materials, 2020, 3, 99-105.	5.1	11

#	Article	IF	CITATIONS
361	Thiol-promoted catalytic synthesis of high-performance furan-containing lubricant base oils from biomass derived 2-alkylfurans and ketones. Green Chemistry, 2020, 22, 7896-7906.	9.0	11
362	Accurate Thermochemistry of Complex Lignin Structures via Density Functional Theory, Group Additivity, and Machine Learning. ACS Sustainable Chemistry and Engineering, 2021, 9, 3043-3049.	6.7	11
363	Experimental and Theoretical Insights into the Active Sites on WO <i>_x</i> /Pt(111) Surfaces for Dehydrogenation and Dehydration Reactions. ACS Catalysis, 2021, 11, 8023-8032.	11.2	11
364	Periodic patterning in materials deposition by self-regulating diffusion-reaction processes. Applied Physics Letters, 2003, 82, 3357-3359.	3.3	10
365	Pattern Formation in Porous Media via the Liesegang Ring Mechanism. Industrial & Engineering Chemistry Research, 2004, 43, 3073-3084.	3.7	10
366	Downsizing Chemical Processes for Portable Hydrogen Production. ACS Symposium Series, 2005, , 179-193.	0.5	10
367	Adaptive coarse-grained Monte Carlo simulation of reaction and diffusion dynamics in heterogeneous plasma membranes. BMC Bioinformatics, 2010, 11, 218.	2.6	10
368	Kinetic Modeling of Pt-Catalyzed Glycolaldehyde Decomposition to Syngas. Journal of Physical Chemistry A, 2012, 116, 4621-4628.	2.5	10
369	Biomass-derived oxygenate reforming on Pt(111): A demonstration of surface science using d-glucose and its model surrogate glycolaldehyde. Surface Science, 2012, 606, L91-L94.	1.9	10
370	Tandem Aromatization of Oxygenated Furans by Framework Zinc In Zeolites. A Computational Study. Journal of Physical Chemistry C, 2017, 121, 22178-22186.	3.1	10
371	Regularized machine learning on molecular graph model explains systematic error in DFT enthalpies. Scientific Reports, 2021, 11, 14372.	3.3	10
372	Microkinetic Modeling of Surface Catalysis. , 2020, , 1377-1404.		10
373	The role of molecular interactions and interfaces in diffusion: Transport diffusivity and evaluation of the Darken approximation. Journal of Chemical Physics, 2005, 123, 184707.	3.0	9
374	Long-time integration methods for mesoscopic models of pattern-forming systems. Journal of Computational Physics, 2011, 230, 5704-5715.	3.8	9
375	Multilevel coarse graining and nano-pattern discovery in many particle stochastic systems. Journal of Computational Physics, 2012, 231, 2599-2620.	3.8	9
376	Solvent-Induced Frequency Shifts of 5-Hydroxymethylfurfural Deduced via Infrared Spectroscopy and <i>ab Initio</i> Calculations. Journal of Physical Chemistry A, 2014, 118, 12149-12160.	2.5	9
377	Characterization of Oxidation States in Metal/Metal Oxide Catalysts in Liquid-Phase Hydrodeoxygenation Reactions with a Trickle Bed Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 5591-5598.	3.7	9
378	Spectroscopic characterization of a highly selective NiCu ₃ /C hydrodeoxygenation catalyst. Catalysis Science and Technology, 2018, 8, 6100-6108.	4.1	9

#	Article	IF	CITATIONS
379	Synthesis of (hemi)cellulosic lubricant base oils <i>via</i> catalytic coupling and deoxygenation pathways. Green Chemistry, 2021, 23, 4916-4930.	9.0	9
380	BrÃ,nsted Acid Catalysis of the Direct Acylation of 2-Methylfuran by Acetic Acid. Theoretical Insights into the Role of BrÃ,nsted Acidity and Confinement. ACS Catalysis, 2021, 11, 9916-9925.	11.2	9
381	Lignin monomer conversion into biolubricant base oils. Green Chemistry, 2021, 23, 10090-10100.	9.0	9
382	Accelerating manufacturing for biomass conversion <i>via</i> integrated process and bench digitalization: a perspective. Reaction Chemistry and Engineering, 2022, 7, 813-832.	3.7	9
383	Microwave Heating-Induced Temperature Gradients in Liquid–Liquid Biphasic Systems. Industrial & Engineering Chemistry Research, 2022, 61, 3011-3022.	3.7	9
384	Unleashing the Power of Knowledge Extraction from Scientific Literature in Catalysis. Journal of Chemical Information and Modeling, 2022, 62, 3316-3330.	5.4	9
385	Catalytic Partial Oxidation Pilot Plant Study. Industrial & Engineering Chemistry Research, 2010, 49, 94-103.	3.7	8
386	Nanoscale Surface Pattern Evolution in Heteroepitaxial Bimetallic Films. ACS Nano, 2011, 5, 7168-7175.	14.6	8
387	Synthesis of mesoporous silica nanobamboo with highly dispersed tungsten carbide nanoparticles. Dalton Transactions, 2012, 41, 6914.	3.3	8
388	Core–Shell Nanocatalyst Design by Combining Highâ€Throughput Experiments and Firstâ€Principles Simulations. ChemCatChem, 2013, 5, 3712-3718.	3.7	8
389	Stochastic averaging and sensitivity analysis for two scale reaction networks. Journal of Chemical Physics, 2016, 144, 074104.	3.0	8
390	Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model. AIP Advances, 2018, 8, .	1.3	8
391	Volcano Curves for in Silico Prediction of Mono- and Bifunctional Catalysts: Application to Ammonia Decomposition. Journal of Physical Chemistry C, 2019, 123, 27097-27104.	3.1	8
392	110th Anniversary: Kinetics and X-ray Absorption Spectroscopy in Methane Total Oxidation over Alumina-Supported Pt, Pd, and Ag–Pd Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 17718-17726.	3.7	8
393	An unconventional DCOx favored Co/N-C catalyst for efficient conversion of fatty acids and esters to liquid alkanes. Applied Catalysis A: General, 2020, 591, 117385.	4.3	8
394	Uncertainty Quantification and Error Propagation in the Enthalpy and Entropy of Surface Reactions Arising from a Single DFT Functional. Journal of Physical Chemistry C, 2021, 125, 18187-18196.	3.1	8
395	Insights into Supported Subnanometer Catalysts Exposed to CO <i>via</i> Machine-Learning-Enabled Multiscale Modeling. Chemistry of Materials, 2022, 34, 1611-1619.	6.7	8
396	Automated exploitation of the big configuration space of large adsorbates on transition metals reveals chemistry feasibility. Nature Communications, 2022, 13, 2087.	12.8	8

#	Article	IF	CITATIONS
397	Computational-based catalyst design for thermochemical transformations. MRS Bulletin, 2011, 36, 211-215.	3.5	7
398	Adsorption and Diffusion of Methanol, Glycerol, and Their Mixtures in a Metal Organic Framework. Industrial & Engineering Chemistry Research, 2011, 50, 14084-14089.	3.7	7
399	Design and Fabrication of a High-Throughput Microreactor and Its Evaluation for Highly Exothermic Reactions. Industrial & Engineering Chemistry Research, 2012, 51, 16270-16277.	3.7	7
400	1,2-H- versus 1,2-C-Shift on Sn-Silsesquioxanes. ACS Catalysis, 2017, 7, 25-33.	11.2	7
401	Reversible Formation of Silanol Groups in Two-Dimensional Siliceous Nanomaterials under Mild Hydrothermal Conditions. Journal of Physical Chemistry C, 2020, 124, 18045-18053.	3.1	7
402	Numerical Assessment of Theoretical Error Estimates in Coarse-Grained Kinetic Monte Carlo Simulations: Application to Surface Diffusion. International Journal for Multiscale Computational Engineering, 2005, 3, 59-70.	1.2	7
403	Higher loadings of Pt single atoms and clusters over reducible metal oxides: application to C–O bond activation. Catalysis Science and Technology, 2022, 12, 2920-2928.	4.1	7
404	<i>In Situ</i> Tracking of Nonthermal Plasma Etching of ZIF-8 Films. ACS Applied Materials & Interfaces, 2022, 14, 19023-19030.	8.0	7
405	Instabilities in homogeneous nonisothermal reactors: Comparison of deterministic and Monte Carlo simulations. Journal of Chemical Physics, 1995, 102, 1781-1790.	3.0	6
406	Nonlinear dynamics of surface stabilized premixed and diffusion flames: current trends and future directions. Chemical Engineering Science, 2000, 55, 311-319.	3.8	6
407	Synthesis of rigid and stable large-inner-diameter multiwalled carbon nanotubes. RSC Advances, 2012, 2, 2685.	3.6	6
408	On factors controlling activity of submonolayer bimetallic catalysts: Nitrogen desorption. Journal of Chemical Physics, 2014, 140, 014703.	3.0	6
409	Improved slit-shaped microseparator and its integration with a microreactor for modular biomanufacturing. Green Chemistry, 2021, 23, 3700-3714.	9.0	6
410	5–5 Lignin Linkage Cleavage over Ru: A Density Functional Theory Study. ACS Sustainable Chemistry and Engineering, 2021, 9, 16143-16152.	6.7	6
411	Python Group Additivity (pGrAdd) software for estimating species thermochemical properties. Computer Physics Communications, 2022, 273, 108277.	7.5	6
412	Selective Dehydra-decyclization of Cyclic Ethers to Conjugated Dienes over Zirconia. Journal of Catalysis, 2022, , .	6.2	6
413	Complex dynamics of combustion flows by direct numerical simulations. Physics of Fluids, 2000, 12, 252-255.	4.0	5
414	Roles of Transients and Nucleation in Film Deposition within a Support. Industrial & Engineering Chemistry Research, 2003, 42, 1321-1328.	3.7	5

#	Article	IF	CITATIONS
415	Continuum mesoscopic framework for multiple interacting species and processes on multiple site types and/or crystallographic planes. Journal of Chemical Physics, 2007, 127, 034705.	3.0	5
416	The impact of differential lignin S/G ratios on mutagenicity and chicken embryonic toxicity. Journal of Applied Toxicology, 2022, 42, 423-435.	2.8	5
417	Thermochemical Data Fusion Using Graph Representation Learning. Journal of Chemical Information and Modeling, 2020, 60, 4673-4683.	5.4	5
418	Modular Plasma Microreactor for Intensified Hydrogen Peroxide Production. ACS Sustainable Chemistry and Engineering, 2022, 10, 1829-1838.	6.7	5
419	Mesoscopic Modeling of Surface Processes. The IMA Volumes in Mathematics and Its Applications, 2004, , 179-198.	0.5	4
420	The role of molecular interactions and interfaces in diffusion: Permeation through single-crystal and polycrystalline microporous membranes. Journal of Chemical Physics, 2005, 123, 184708.	3.0	4
421	Molecular sieve valves driven by adsorbate-adsorbate interactions: Hysteresis in permeation of microporous membranes. Journal of Chemical Physics, 2005, 122, 204706.	3.0	4
422	Phosphonateâ€Modified UiOâ€66 BrÃ,nsted Acid Catalyst and Its Use in Dehydraâ€Decyclization of 2â€Methyltetrahydrofuran to Pentadienes. Angewandte Chemie, 2020, 132, 13362-13368.	2.0	4
423	Modified Energy Span Analysis Reveals Heterogeneous Catalytic Kinetics. Industrial & Engineering Chemistry Research, 2022, 61, 5117-5128.	3.7	4
424	Reaction network reduction for distributed systems by model training in lumped reactors: Application to bifurcations in combustion. Chaos, 1999, 9, 95-107.	2.5	3
425	Mechanism of BrÃ,nsted Acid-Catalyzed Glucose Dehydration. ChemSusChem, 2015, 8, 1291-1291.	6.8	3
426	Microkinetic Modeling of Surface Catalysis. , 2018, , 1-28.		3
427	Scaling of Transition State Vibrational Frequencies and Application of d-Band Theory to the BrÃ,nsted–Evans–Polanyi Relationship on Surfaces. Journal of Physical Chemistry C, 2021, 125, 7119-7129.	3.1	3
428	Prediction of Transition-State Scaling Relationships and Universal Transition-State Vibrational and Entropic Correlations for Dehydrogenations. Journal of Physical Chemistry C, 2021, 125, 19780-19790.	3.1	3
429	Inline Rolling Shear Alignment: Deposition and Long-Range Order of Block Polymer Templates in a Fast, Single-Step Process. ACS Applied Polymer Materials, 2022, 4, 682-691.	4.4	3
430	Kinetics of Facet Formation During Growth and Etching of Crystals. Materials Research Society Symposia Proceedings, 1991, 237, 145.	0.1	2
431	Molecular valves actuated by intermolecular forces. Physical Review E, 2005, 71, 060201.	2.1	2

432 Microreactor Engineering: Processes, Detailed Design and Modeling. , 0, , 179-198.

2

#	Article	IF	CITATIONS
433	Catalytic Hydrotreatment of Humins to Bioâ€Oil in Methanol over Supported Metal Catalysts. ChemSusChem, 2018, 11, 3545-3545.	6.8	2
434	Volcano curves for homologous series reactions: Oxidation of small alkanes. Applied Catalysis A: General, 2019, 587, 117255.	4.3	2
435	Tuning at the subnanometre scale. Nature Catalysis, 2022, 5, 467-468.	34.4	2
436	Mathematical Strategies for the Coarse-Graining of Microscopic Models. , 2005, , 1477-1490.		1
437	Continuum and Stochastic Modeling on the Role of Gel Microstructure in Zeolite Crystallization. Materials Research Society Symposia Proceedings, 1996, 431, 197.	0.1	0
438	Mesoscopic modeling of binary diffusion through microporous zeolite membranes. Materials Research Society Symposia Proceedings, 2002, 752, 1.	0.1	0
439	The role of reaction engineering in cancer biology: Bio-imaging informatics reveals implications of the plasma membrane heterogeneities. Chemical Engineering Science, 2007, 62, 5222-5231.	3.8	0
440	Novel Mechanism for the Dissociation of H2O and the Diffusion of O and H along the aAl2O3 (0001) Surface. , 2008, , .		0
441	Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jet-fuel Ranged Alkanes over a Rhenium-Modified Iridium Catalyst. ChemSusChem, 2017, 10, 3164-3164.	6.8	0
442	Branched Bio‣ubricant Base Oil Production through Aldol Condensation. ChemSusChem, 2019, 12, 4723-4723.	6.8	0
443	Ozone Treatment. , 2005, , 1993-2001.		0
444	Mathematical Strategies for the Coarse-Graining of Microscopic Models. , 2005, , 1477-1490.		0