
Maciej Baginski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5648032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel chalcone-derived pyrazoles as potential therapeutic agents for the treatment of non-small cell lung cancer. Scientific Reports, 2022, 12, 3703.	3.3	7
2	Relationship between Telomere Length, TERT Genetic Variability and TERT, TP53, SP1, MYC Gene Co-Expression in the Clinicopathological Profile of Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 5164.	4.1	9
3	From tryptophan to novel mitochondria-disruptive agent, synthesis and biological evaluation of 1,2,3,6-tetrasubstituted carbazoles. European Journal of Medicinal Chemistry, 2022, 238, 114453.	5.5	6
4	Combined anticancer therapy with imidazoacridinone analogue Câ€1305 and paclitaxel in human lung and colon cancer xenografts—Modulation of tumour angiogenesis. Journal of Cellular and Molecular Medicine, 2022, 26, 3950-3964.	3.6	5
5	Triazoloacridone C-1305 impairs XBP1 splicing by acting as a potential IRE1α endoribonuclease inhibitor. Cellular and Molecular Biology Letters, 2021, 26, 11.	7.0	9
6	Effective Drug Concentration and Selectivity Depends on Fraction of Primitive Cells. International Journal of Molecular Sciences, 2021, 22, 4931.	4.1	27
7	Molecular mechanism of proton-coupled ligand translocation by the bacterial efflux pump EmrE. PLoS Computational Biology, 2021, 17, e1009454.	3.2	8
8	Photosensitive and pH-dependent activity of pyrazine-functionalized carbazole derivative as promising antifungal and imaging agent. Scientific Reports, 2020, 10, 11767.	3.3	16
9	Highly Conserved Homotrimer Cavity Formed by the SARS-CoV-2 Spike Glycoprotein: A Novel Binding Site. Journal of Clinical Medicine, 2020, 9, 1473.	2.4	73
10	In silico design of telomerase inhibitors. Drug Discovery Today, 2020, 25, 1213-1222.	6.4	10
11	Utilizing Genome-Wide mRNA Profiling to Identify the Cytotoxic Chemotherapeutic Mechanism of Triazoloacridone C-1305 as Direct Microtubule Stabilization. Cancers, 2020, 12, 864.	3.7	5
12	Molecular modelling of membrane activity of amphotericin B, a polyene macrolide antifungal antibiotic Acta Biochimica Polonica, 2019, 52, 655-658.	0.5	69
13	The structurally similar TRFH domain of TRF1 and TRF2 dimers shows distinct behaviour towards TIN2. Archives of Biochemistry and Biophysics, 2018, 642, 52-62.	3.0	5
14	Extracting functional groups of ALLINI to design derivatives of FDAâ€approved drugs: Inhibition of HIVâ€1 integrase. Biotechnology and Applied Biochemistry, 2018, 65, 594-607.	3.1	0
15	Cell Density-Dependent Cytological Stage Profile and Its Application for a Screen of Cytostatic Agents Active Toward Leukemic Stem Cells. Stem Cells and Development, 2018, 27, 488-513.	2.1	5
16	Structural and dynamic insights on the EmrE protein with TPP + and related substrates through molecular dynamics simulations. Chemistry and Physics of Lipids, 2018, 212, 1-11.	3.2	11
17	Molecular basis and potential activity of HIVâ€l reverse transcriptase toward trimethylamineâ€based compounds. Biotechnology and Applied Biochemistry, 2017, 64, 810-826.	3.1	1
18	Molecular basis and quantitative assessment of TRF1 and TRF2 protein interactions with TIN2 and Apollo peptides. European Biophysics Journal, 2017, 46, 171-187.	2.2	4

MACIEJ BAGINSKI

#	Article	IF	CITATIONS
19	Molecular basis for the DNA damage induction and anticancer activity of asymmetrically substituted anthrapyridazone PDZ-7. Oncotarget, 2017, 8, 105137-105154.	1.8	5
20	ldentification of 1 <i>H</i> â€indeneâ€(1,3,5,6)â€ŧetrol derivatives as potent pancreatic lipase inhibitors using molecular docking and molecular dynamics approach. Biotechnology and Applied Biochemistry, 2016, 63, 765-778.	3.1	8
21	Membrane Sterols Modulate the Binding Mode of Amphotericin B without Affecting Its Affinity for a Lipid Bilayer. Langmuir, 2016, 32, 3452-3461.	3.5	22
22	Interaction of cisplatin and two potential antitumoral platinum(<scp>ii</scp>) complexes with a model lipid membrane: a combined NMR and MD study. Physical Chemistry Chemical Physics, 2015, 17, 1458-1468.	2.8	16
23	Structural and dynamic changes adopted by EmrE, multidrug transporter protein—Studies by molecular dynamics simulation. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2065-2074.	2.6	11
24	SiMiSnoRNA: Collection of siRNA, miRNA, and snoRNA database for RNA interference / SiMiSnoRNA: RNA Interferansı için siRNA, miRNA ve snoRNA veritabanında depolanan siRNA, miRNA, and snoRNA koleksiyonları. Turkish Journal of Biochemistry, 2015, 40, .	0.5	0
25	Molecular Modeling and Evaluation of Novel Dibenzopyrrole Derivatives as Telomerase Inhibitors and Potential Drug for Cancer Therapy. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 1196-1207.	3.0	9
26	Novel Anticancer Strategy Aimed at Targeting Shelterin Complexes by the Induction of Structural Changes in Telomeric DNA: Hitting two Birds with one Stone. Current Cancer Drug Targets, 2014, 14, 201-216.	1.6	5
27	Exploring Amphotericin B-Membrane Interactions: Free Energy Simulations. Biophysical Journal, 2013, 104, 250a.	0.5	6
28	The Effect of Sterols on Amphotericin B Self-Aggregation in a Lipid Bilayer as Revealed by Free Energy Simulations. Biophysical Journal, 2013, 104, 1485-1494.	0.5	34
29	New Insights into the Membrane Mechanism of Action of Amphotericin B from Molecular Dynamics Simulations. Biophysical Journal, 2012, 102, 96a.	0.5	0
30	How do Sterols Determine the Antifungal Effect of Amphotericin B? free Energy of Binding Between the Drug and its Membrane Targets. Biophysical Journal, 2011, 100, 156a.	0.5	2
31	Molecular Properties of Telomeric TRF1/TRF2 - DNA Systems. Biophysical Journal, 2010, 98, 267a.	0.5	0
32	How Do Sterols Determine the Antifungal Activity of Amphotericin B? Free Energy of Binding between the Drug and Its Membrane Targets. Journal of the American Chemical Society, 2010, 132, 18266-18272.	13.7	71
33	Influence of a lipid bilayer on the conformational behavior of amphotericin B derivatives — A molecular dynamics study. Biophysical Chemistry, 2009, 141, 105-116.	2.8	27
34	On the Possibility of the Amphotericin B-Sterol Complex Formation in Cholesterol- and Ergosterol-Containing Lipid Bilayers: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2009, 113, 15875-15885.	2.6	38
35	Amphotericin B and Its New Derivatives – Mode of Action. Current Drug Metabolism, 2009, 10, 459-469.	1.2	142
36	Interactions of amphotericin B derivatives with lipid membranes—A molecular dynamics study. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2616-2626.	2.6	16

MACIEJ BAGINSKI

#	Article	IF	CITATIONS
37	Comparative Molecular Dynamics Study of Lipid Membranes Containing Cholesterol and Ergosterol. Biophysical Journal, 2006, 90, 2368-2382.	0.5	153
38	Modulation of Amphotericin B Membrane Interaction by Cholesterol and ErgosterolA Molecular Dynamics Study. Journal of Physical Chemistry B, 2006, 110, 16743-16753.	2.6	46
39	Chapter 9 Interaction of Polyene Macrolide Antibiotics with Lipid Model Membranes. Behavior Research Methods, 2006, , 269-329.	4.0	14
40	Interaction of amphotericin B and its selected derivatives with membranes: molecular modeling studies. Chemical Record, 2006, 6, 320-332.	5.8	45
41	MM/PBSA analysis of molecular dynamics simulations of bovine β-lactoglobulin: Free energy gradients in conformational transitions?. Proteins: Structure, Function and Bioinformatics, 2005, 59, 91-103.	2.6	28
42	Induction of unique structural changes in guanine-rich DNA regions by the triazoloacridone C-1305, a topoisomerase II inhibitor with antitumor activities. Nucleic Acids Research, 2005, 33, 6034-6047.	14.5	48
43	Thermodynamic and electrostatic properties of ternary Oxytricha nova TEBP–DNA complex. Journal of Structural Biology, 2005, 152, 169-184.	2.8	8
44	Molecular modelling of membrane activity of amphotericin B, a polyene macrolide antifungal antibiotic. Acta Biochimica Polonica, 2005, 52, 655-8.	0.5	20
45	Molecular aspects of the interaction between amphotericin B and a phospholipid bilayer: molecular dynamics studies. Journal of Molecular Modeling, 2004, 10, 223-232.	1.8	34
46	Comparative molecular dynamics simulations of amphotericin B–cholesterol/ergosterol membrane channels. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1567, 63-78.	2.6	138
47	Ion passage pathways and thermodynamics of the amphotericin B membrane channel. European Biophysics Journal, 2002, 31, 294-305.	2.2	22
48	Binding free energy of selected anticancer compounds to DNA - theoretical calculations. Journal of Molecular Modeling, 2002, 8, 24-32.	1.8	17
49	Conformational properties of amphotericin B amide derivatives–impact on selective toxicity. Journal of Computer-Aided Molecular Design, 2000, 14, 689-703.	2.9	25
50	Molecular Properties of Amphotericin B Membrane Channel: A Molecular Dynamics Simulation. Molecular Pharmacology, 1997, 52, 560-570.	2.3	118
51	Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA. Journal of Molecular Biology, 1997, 274, 253-267.	4.2	104
52	Distribution of electrostatic potential around amphotericin B and its membrane targets. Computational and Theoretical Chemistry, 1997, 389, 139-146.	1.5	23
53	Conformational analysis of Amphotericin B. Biophysical Chemistry, 1997, 65, 91-100.	2.8	24
54	Ade NovoDesign Probe of a Dopamine Receptor Ligand Based on a Theoretical Approach. Bioorganic Chemistry, 1996, 24, 358-375.	4.1	2

4

#	Article	IF	CITATIONS
55	The distribution of molecular electrostatic potential for antifungal antibiotic amphotericin B. AIP Conference Proceedings, 1995, , .	0.4	0
56	The role of amphotericin B amine group basicity in its antifungal action. A theoretical approach. Biophysical Chemistry, 1994, 49, 241-250.	2.8	13
57	Comparative conformational analysis of cholesterol and ergosterol by molecular mechanics. European Biophysics Journal, 1989, 17, 159-166.	2.2	54