Luciana R P Kassab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5647940/publications.pdf

Version: 2024-02-01

185 papers 4,072 citations

36 h-index 52 g-index

187 all docs

187
docs citations

187 times ranked

1944 citing authors

#	Article	IF	Citations
1	Gallium (III) oxide reinforced novel heavy metal oxide (HMO) glasses: A focusing study on synthesis, optical and gamma-ray shielding properties. Ceramics International, 2022, 48, 14261-14272.	4.8	14
2	Fs laser writing in Nd3+ doped GeO2-PbO glasses for the production of a new double line waveguide architectures for photonic applications. , 2022, , .		0
3	Influence of different parameters used for fs laser writing of double line waveguides into Nd3+ doped TeO2-ZnO glasses by fs laser writing. , 2022, , .		O
4	Emission properties study of a Nd3+-doped TZA glass random laser. , 2022, , .		1
5	A new double-line waveguide architecture for photonic applications using fs laser writing in Nd3+doped GeO2-PbO glasses. Optical Materials, 2022, 129, 112495.	3.6	5
6	Optical properties of glasses and glass-ceramics for optical amplifiers, photovoltaic devices, color displays, optical limiters, and Random Lasers. Optical Materials, 2022, 131, 112648.	3.6	10
7	Random laser emission from neodymium doped zinc tellurite glass-powder presenting luminescence concentration quenching. Journal of Luminescence, 2021, 233, 117936.	3.1	17
8	New double line architecture produced by fs laser irradiation in Nd3+ doped TeO2-ZnO glass for photonic applications. , 2021 , , .		0
9	Pedestal waveguides based on GeO2-Bi2O3, GeO2-PbO, Ta2O5 and SiOxNy cores as platforms for optical amplifiers and nonlinear optics applications: Review of recent advances. Journal of Luminescence, 2021, 236, 118113.	3.1	6
10	Nonlinear refraction and absorption spectroscopy of tellurite glasses within telecom bands. Journal of Alloys and Compounds, 2021, 872, 159738.	5.5	14
11	Performance improvement of Si solar cell via down - Conversion and plasmonic processes using Eu3+doped TeO2-GeO2-PbO glasses with silver nanoparticles as cover layer. Journal of Luminescence, 2021, 238, 118271.	3.1	13
12	Optical properties of B2O3–CaF2 glass-ceramics doped with silver nanoparticles and praseodymium ions. Journal of Luminescence, 2021, 238, 118225.	3.1	4
13	Nanoparticles-based photonic metal–dielectric composites: A survey of recent results. Optical Materials: X, 2021, 12, 100098.	0.8	O
14	Tunable visible emission and white light generation by Ag nanoclusters in Tm3+/Yb3+ doped GeO2-PbO glasses. , 2021, , .		0
15	Broadband visible light emission by GeO2-PbO glasses doped with Ag nanoclusters. , 2021, , .		О
16	Temporal study of a Nd3+ doped TZA glass random laser. , 2021, , .		0
17	Double line waveguide amplifiers written by femtosecond laser irradiation in rare-earth doped germanate glasses. Journal of Luminescence, 2020, 217, 116789.	3.1	12
18	Newly developed tellurium oxide glasses for nuclear shielding applications: An extended investigation. Journal of Non-Crystalline Solids, 2020, 528, 119763.	3.1	56

#	Article	IF	Citations
19	Structural and physical characterization study on synthesized tellurite (TeO2) and germanate (GeO2) glass shields using XRD, Raman spectroscopy, FLUKA and PHITS. Optical Materials, 2020, 110, 110533.	3.6	40
20	Process Oxygen Flow Influence on the Structural Properties of Thin Films Obtained by Co-Sputtering of (TeO2)x-ZnO and Au onto Si Substrates. Nanomaterials, 2020, 10, 1863.	4.1	6
21	Fabrication, optical characteristic, and nuclear radiation shielding properties of newly synthesised Physics A: Materials Science and Processing 3020 1261 math	2.3	13
22	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1807" altimg="si140.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub> Ca <mml:math <="" display="inline" id="d1e1815" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.6</td><td>15</td></mml:math>	3.6	15
23	altimg="si140.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow><td>3.1</td><td>14</td></mml:msub>	3.1	14
24	Thermo-optical properties of glasses doped with semiconductor or metallic nanoparticles and rare-earth ions., 2020,, 5-29.		0
25	Newly developed BGO glasses: Synthesis, optical and nuclear radiation shielding properties. Ceramics International, 2020, 46, 11861-11873.	4.8	28
26	Efficiency enhancement of silicon solar cells covered by GeO2-PbO glasses doped with Eu3+ and TiO2 nanoparticles. Journal of Luminescence, 2020, 223, 117244.	3.1	26
27	Influence of Al2O3 on the photoluminescence and optical gain performance of Nd3+ doped germanate and tellurite glasses. Optical Materials, 2020, 109, 110342.	3.6	26
28	Double line neodymium doped GeO2-PbO waveguide amplifier for the second telecom window. , 2020, , .		2
29	Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses. Ceramics International, 2019, 45, 24664-24674.	4.8	69
29 30	Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses. Ceramics International, 2019, 45, 24664-24674. Germanium oxide glass based metal-dielectric nanocomposites: fabrication and optical characterization: a review of new developments. Journal of Materials Science: Materials in Electronics, 2019, 30, 16781-16788.	4.8	69 5
	bismuth oxide glasses. Ceramics International, 2019, 45, 24664-24674. Germanium oxide glass based metal-dielectric nanocomposites: fabrication and optical characterization: a review of new developments. Journal of Materials Science: Materials in		
30	bismuth oxide glasses. Ceramics International, 2019, 45, 24664-24674. Germanium oxide glass based metal-dielectric nanocomposites: fabrication and optical characterization: a review of new developments. Journal of Materials Science: Materials in Electronics, 2019, 30, 16781-16788. Improving performance in ytterbium-erbium doped waveguide amplifiers through scattering by large	2,2	5
30	bismuth oxide glasses. Ceramics International, 2019, 45, 24664-24674. Germanium oxide glass based metal-dielectric nanocomposites: fabrication and optical characterization: a review of new developments. Journal of Materials Science: Materials in Electronics, 2019, 30, 16781-16788. Improving performance in ytterbium-erbium doped waveguide amplifiers through scattering by large silicon nanostructures. Journal of Alloys and Compounds, 2019, 794, 120-126.	2,2	5
30 31 32	Dismuth oxide glasses. Ceramics International, 2019, 45, 24664-24674. Germanium oxide glass based metal-dielectric nanocomposites: fabrication and optical characterization: a review of new developments. Journal of Materials Science: Materials in Electronics, 2019, 30, 16781-16788. Improving performance in ytterbium-erbium doped waveguide amplifiers through scattering by large silicon nanostructures. Journal of Alloys and Compounds, 2019, 794, 120-126. Optimization of BGO Er/Yb doped pedestal waveguide amplifiers with Si nanostructures. , 2019, , . Effect of silver nanoparticles on the optical amplification of lead germanium oxide glasses doped	2,2	5 8 0
30 31 32 33	bismuth oxide glasses. Ceramics International, 2019, 45, 24664-24674. Germanium oxide glass based metal-dielectric nanocomposites: fabrication and optical characterization: a review of new developments. Journal of Materials Science: Materials in Electronics, 2019, 30, 16781-16788. Improving performance in ytterbium-erbium doped waveguide amplifiers through scattering by large silicon nanostructures. Journal of Alloys and Compounds, 2019, 794, 120-126. Optimization of BGO Er/Yb doped pedestal waveguide amplifiers with Si nanostructures. , 2019, , . Effect of silver nanoparticles on the optical amplification of lead germanium oxide glasses doped with Nd3+. , 2019, , .	2,2	5 8 0

#	Article	IF	Citations
37	Metal-Dielectric Nanocomposites Based on Germanate and Tellurite Glasses. , 2019, , 3-18.		2
38	Efficiency boost in Si-based solar cells using tellurite glass cover layer doped with Eu3+ and silver nanoparticles. Optical Materials, 2019, 88, 155-160.	3.6	33
39	Tunable green/red luminescence by infrared upconversion in biocompatible forsterite nanoparticles with high erbium doping uptake. Optical Materials, 2018, 76, 407-415.	3.6	16
40	Production and characterization of femtosecond laser-written double line waveguides in heavy metal oxide glasses. Optical Materials, 2018, 75, 267-273.	3.6	30
41	The effect of excitation intensity variation and silver nanoparticle codoping on nonlinear optical properties of mixed tellurite and zinc oxide glass doped with Nd2O3 studied through ultrafast z-scan spectroscopy. Optical Materials, 2018, 79, 397-402.	3.6	31
42	Enhanced infrared-to-visible frequency upconversion in Yb3+/Er3+ codoped Bi2O3–GeO2 glasses with embedded silver nanoparticles. Journal of Non-Crystalline Solids, 2018, 498, 395-400.	3.1	26
43	A new fabrication process of pedestal waveguides based on metal dielectric composites of Yb3+/Er3+ codoped PbO-GeO2 thin films with gold nanoparticles. Optical Materials, 2018, 86, 433-440.	3.6	20
44	Tellurite Glasses: Solar Cell, Laser, and Luminescent Displays Applications. , 2018, , 225-247.		4
45	A review on pedestal waveguides for low loss optical guiding, optical amplifiers and nonlinear optics applications. Journal of Luminescence, 2018, 203, 135-144.	3.1	36
46	Evaluation of Carbon thin Films Using Raman Spectroscopy. Materials Research, 2018, 21, .	1.3	20
47	Rare-earth-doped germanate and tellurite glasses: Laser, waveguide, and ultrafast device applications. , 2018, , 263-289.		8
48	Influence of silicon nanocrystals on the performance of Yb3+/Er3+: Bi2O3-GeO2 pedestal waveguides for amplification at 1542 nm. , 2018, , .		0
49	Femtosecond laser-written double line waveguides in germanate and tellurite glasses. , 2018, , .		0
50	Tellurite Thin Films Produced by RF Sputtering for Optical Waveguides and Memory Device Applications. Springer Series in Materials Science, 2017, , 241-257.	0.6	2
51	Linear and Nonlinear Optical Properties of Some Tellurium Oxide Glasses. Springer Series in Materials Science, 2017, , 15-39.	0.6	4
52	Plasmon-Assisted Efficiency Enhancement of Eu3+-Doped Tellurite Glass-Covered Solar Cells. Journal of Electronic Materials, 2017, 46, 6750-6755.	2.2	23
53	Influence of gold nanoparticles on the 805Ânm gain in Tm3+/Yb3+ codoped PbO-GeO2 pedestal waveguides. Optical Materials, 2017, 72, 518-523.	3.6	22
54	Second and third-order nonlinear optical properties of Er3+/Yb3+ doped PbO-GeO2-Ga2O3 glasses with Au nanoparticles. Materials Research Bulletin, 2017, 95, 339-348.	5.2	38

#	Article	IF	CITATIONS
55	Pedestal platform for low loss doped amplifiers and nonlinear optics., 2017,,.		О
56	Influence of the melting conditions and Bi <inf>2</inf> O <inf>3</inf> concentration on GeO <inf>2</inf> -Bi <inf>2</inf> O <inf>3</inf> glasses for near-infrared broadband devices applications., 2017,,.		0
57	Characterization of Thin Carbon Films Produced by the Magnetron Sputtering Technique. Materials Research, 2016, 19, 669-672.	1.3	15
58	Enhanced Photoluminescence and Planar Waveguide of Rare-Earth Doped Germanium Oxide Glasses with Metallic Nanoparticles., 2016,, 131-144.		9
59	Production and Characterization of Carbon Thin Films by the Magnetron Sputtering Technique. Materials Science Forum, 2016, 881, 471-474.	0.3	4
60	The effects of Nd2O3 concentration in the laser emission of TeO2-ZnO glasses. Optical Materials, 2016, 58, 84-88.	3.6	47
61	Conduction and reversible memory phenomena in Au-nanoparticles-incorporated TeO 2 –ZnO films. Thin Solid Films, 2016, 611, 21-26.	1.8	22
62	Upconversion photoluminescence in GeO 2 -PbO glass codoped with Nd 3+ and Yb 3+. Optical Materials, 2016, 60, 313-317.	3.6	20
63	Thermal and structural analysis of germanate glass and thin films co-doped with silver nanoparticles and rare earth ions with insights from visible and Raman spectroscopy. Vibrational Spectroscopy, 2016, 87, 143-148.	2.2	12
64	Efficiency enhancement in solar cells using photon down-conversion in Tb/Yb-doped tellurite glass. Solar Energy Materials and Solar Cells, 2016, 157, 468-475.	6.2	83
65	Silver nanoparticles enhanced photoluminescence of Nd 3+ doped germanate glasses at 1064Ânm. Optical Materials, 2016, 60, 25-29.	3.6	51
66	Influence of gold nanoparticles on Eu ³⁺ doped GeO<inf>2</inf>-Bi<inf>2</inf>3</inf> glasses covered Silicon solar cell. , 2016, , .		2
67	Photoluminescence and nonlinear optical phenomena in plasmonic random media—A review of recent works. Journal of Luminescence, 2016, 169, 492-496.	3.1	13
68	Nonlinear optical features on Yb3+/Tm3+ codoped PbO-GeO2 glasses with Si nanoparticles. Materials Research Bulletin, 2016, 77, 8-14.	5.2	14
69	Production of Yb ³⁺ /Er ³⁺ codoped PbO-GeO <inf>2</inf> pedestal type waveguides for photonic applications., 2015, , .		2
70	White light generation controlled by changing the concentration of silver nanoparticles hosted by Ho3+/Tm3+/Yb3+ doped GeO2–PbO glasses. Journal of Alloys and Compounds, 2015, 644, 155-158.	5.5	42
71	Enhanced Er3+ photoluminescence in TeO2–ZnO glass containing silicon nanocrystals. Applied Physics B: Lasers and Optics, 2015, 121, 117-121.	2.2	10
72	Advances on the fabrication process of Er3+/Yb3+:GeO2–PbO pedestal waveguides for integrated photonics. Optical Materials, 2015, 49, 196-200.	3.6	21

#	Article	IF	CITATIONS
73	Enhancement of Optical Absorption, Photoluminescence and Raman Transitions in Bi2O3-GeO2Glasses with Embedded Silver Nanoparticles. Journal of the Brazilian Chemical Society, 2015, , .	0.6	3
74	Production and characterization of Tm3+/Yb3+ codoped pedestal-type PbO–GeO2 waveguides. Canadian Journal of Physics, 2014, 92, 597-601.	1.1	3
7 5	Influence of gold nanoparticles on the 153 µm optical gain in Er^3+/Yb^3+: PbO-GeO_2 RIB waveguides. Optics Express, 2014, 22, 16424.	3.4	24
76	Fabrication and characterization of aluminum nitride pedestal-type optical waveguide. Canadian Journal of Physics, 2014, 92, 951-954.	1.1	3
77	Laser emission of a Nd-doped mixed tellurite and zinc oxide glass. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1590.	2.1	48
78	Laser stimulated piezoelectricity in Er3+ doped GeO2–Bi2O3 glasses containing silicon nanocrystals. Optical Materials, 2014, 38, 28-32.	3.6	1
79	TeO < inf > 2 < /inf > -ZnO thin films with gold nanoparticles as passivating materials for power devices applications. , 2014, , .		1
80	Frequency upconversion in Nd3+ doped PbO–GeO2 glasses containing silver nanoparticles. Journal of Alloys and Compounds, 2014, 586, S516-S519.	5.5	61
81	Ultrafast third-order optical nonlinearities of heavy metal oxide glasses containing gold nanoparticles. Optical Materials, 2014, 36, 829-832.	3.6	45
82	Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer. Thin Solid Films, 2014, 571, 225-229.	1.8	11
83	Fabrication of Yb3+/Er3+ codoped Bi2O3–WO3–TeO2 pedestal type waveguide for optical amplifiers. Optical Materials, 2014, 38, 198-203.	3.6	13
84	Effect of Ag nanoparticles on the radiative properties of tellurite glasses doped with Er3+, Yb3+ and Tm3+ ions. Optical Materials, 2014, 37, 281-286.	3.6	23
85	Production and characterization of Tm3+/Yb3+ codoped waveguides based on PbO–GeO2 thin films. Journal of Alloys and Compounds, 2014, 586, S368-S372.	5.5	13
86	Efficacy of a total skin care approach using a combination of an antiaging serum and a cream comprising a complex of growth factors for skin rejuvenation. Journal of the American Academy of Dermatology, 2014, 70, AB15.	1.2	1
87	Laser stimulated light reflection for TeO2–WO3–Bi2O3 thin films with incorporated Si nanoparticles. Journal of Non-Crystalline Solids, 2013, 376, 90-93.	3.1	2
88	Nonlinear optical properties of Bi2O3-GeO2 glass at 800 and 532 nm. Journal of Applied Physics, 2013, 114, 073503.	2.5	13
89	Nonlinear optical properties of PbO–GeO2 films containing gold nanoparticles. Journal of Luminescence, 2013, 133, 180-183.	3.1	35
90	White light generation in Tm3+/Ho3+/Yb3+ doped PbO-GeO2 glasses excited at 980 nm. Journal of Applied Physics, 2013, 114, 163515.	2.5	20

#	Article	IF	CITATIONS
91	Influence of silver nanoparticles on the infrared-to-visible frequency upconversion in Tm3+/Er3+/Yb3+doped GeO2-PbO glass. Journal of Applied Physics, 2013, 113, 153507.	2.5	46
92	Production of TeO <inf>2</inf> -Bi <inf>2</inf> O <inf>3</inf> thin films for fabrication of integrated optical sensors. , 2013, , .		0
93	Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass. Journal of Applied Physics, 2013, 113, 053102.	2.5	22
94	Enhanced Optical Properties of Germanate and Tellurite Glasses Containing Metal or Semiconductor Nanoparticles. Scientific World Journal, The, 2013, 2013, 1-13.	2.1	24
95	Amplification Properties of Femtosecond Laser-Written Er3+/Yb3+ Doped Waveguides in a Tellurium-Zinc Glass. Advances in Optical Technologies, 2013, 2013, 1-5.	0.8	4
96	Femtosecond third-order nonlinear spectra of lead-germanium oxide glasses containing silver nanoparticles. Optics Express, 2012, 20, 6844.	3.4	43
97	Frequency upconversion properties of Tm3+ doped TeO2–ZnO glasses containing silver nanoparticles. Journal of Alloys and Compounds, 2012, 536, S504-S506.	5.5	46
98	Infrared-to-visible upconversion emission in Er3+ doped TeO2-WO3-Bi2O3 glasses with silver nanoparticles. Journal of Applied Physics, 2012, 112, .	2.5	36
99	PbO–GeO2 rare earth doped glasses with silver nanoparticles as materials for IR laser triggers. Journal of Materials Science: Materials in Electronics, 2012, 23, 1122-1125.	2.2	4
100	Photoluminescence from germanate glasses containing silicon nanocrystals and erbium ions. Applied Physics B: Lasers and Optics, 2012, 106, 1015-1018.	2.2	19
101	Optical and thermal investigation of GeO2–PbO thin films doped with Au and Ag nanoparticles. Thin Solid Films, 2012, 520, 2667-2671.	1.8	10
102	Effects of thermal annealing on the semi-insulating properties of radio frequency magnetron sputtering-produced germanate thin films. Thin Solid Films, 2012, 520, 2695-2700.	1.8	6
103	PbO–GeO2 rib waveguides for photonic applications. Journal of Alloys and Compounds, 2011, 509, S434-S437.	5 . 5	11
104	Er3+ doped waveguide amplifiers written with femtosecond laser in germanate glasses. Optical Materials, 2011, 33, 1902-1906.	3.6	16
105	Effects of gold nanoparticles in the green and red emissions of TeO2–PbO–GeO2 glasses doped with Er3+–Yb3+. Optical Materials, 2011, 33, 1948-1951.	3.6	50
106	Temperature coefficient of optical path of tellurite glasses doped with gold nanoparticles. Optical Materials, 2011, 34, 239-243.	3.6	16
107	Photoinduced piezooptical changes caused by microsecond CO2 Infrared lasers in lead-germanate rare earth tridoped glasses. Materials Letters, 2011, 65, 1445-1447.	2.6	2
108	Influence of the heat treatment on the nucleation of silver nanoparticles in Tm3+ doped PbO-GeO2 glasses. Applied Physics B: Lasers and Optics, 2011, 103, 165-169.	2.2	44

#	Article	IF	CITATIONS
109	Frequency upconversion properties of Ag: TeO2–ZnO nanocomposites codoped with Yb3+ and Tm3+ ions. Applied Physics B: Lasers and Optics, 2011, 104, 1029-1034.	2.2	32
110	Electrical Characterization of TeO2-ZnO Dielectrics Containing Au Nanoparticles. ECS Transactions, 2011, 39, 137-144.	0.5	3
111	Production and Characterization of Bi2O3-WO3-TeO2 Thin Films with Au Nanoparticles for Applications with Micro and Nanoelectronic Devices. ECS Transactions, 2011, 39, 117-121.	0.5	0
112	Influence of gold nanoparticles on optically stimulated effects in TeO2–ZnO and GeO2–PbO amorphous thin films. Optics Communications, 2010, 283, 3691-3694.	2.1	17
113	ZnO–TeO2–Yb/Tm glasses with silver nanoparticles as laser operated quantum electronic devices. Optics and Laser Technology, 2010, 42, 1340-1343.	4.6	18
114	Increased Er3+ upconversion in tellurite fibers and glasses by co-doping with Yb3+. Optical Materials, 2010, 33, 107-111.	3.6	32
115	Optical Waveguide Amplifier Written Using a Femtosecond Laser in Germanate Glasses. , 2010, , .		0
116	Fabrication and Characterization of TeO ₂ -ZnO Rib Waveguides. ECS Transactions, 2010, 31, 225-229.	0.5	12
117	Influence of metallic nanoparticles on electric-dipole and magnetic-dipole transitions of Eu3+ doped germanate glasses. Journal of Applied Physics, 2010, 107, .	2.5	92
118	Three Color Upconversion Luminescence of Er3+/Yb3+/Tm3+ Doped Tellurite Glass for Display Applications. ECS Transactions, 2010, 31, 237-242.	0.5	0
119	Influence of the temperature on the nucleation of silver nanoparticles in Tm3+/Yb3+ codoped PbO–GeO2 glasses. Journal of Non-Crystalline Solids, 2010, 356, 2465-2467.	3.1	28
120	Infrared-to-visible upconversion in Yb3+/Er3+ co-doped PbO–GeO2 glass with silver nanoparticles. Journal of Non-Crystalline Solids, 2010, 356, 2598-2601.	3.1	28
121	Production and characterization of RF-sputtered PbO-GeO2 amorphous thin films containing silver and gold nanoparticles. Journal of Non-Crystalline Solids, 2010, 356, 2602-2605.	3.1	16
122	Photoluminescence enhancement by gold nanoparticles in Eu3+ doped GeO2–Bi2O3 glasses. Applied Physics Letters, 2009, 94, .	3.3	81
123	Frequency upconversion luminescence from Yb+3–Tm+3 codoped PbO–GeO2 glasses containing silver nanoparticles. Journal of Applied Physics, 2009, 106, 063522.	2.5	38
124	Thermo-optical properties of tellurite glasses doped with Eu ³⁺ and Au nanoparticles. Journal Physics D: Applied Physics, 2009, 42, 155404.	2.8	28
125	Electron beam induced second-harmonic generation in Er3+ doped PbO–GeO2 glasses containing silver nanoparticles. Journal of Materials Science: Materials in Electronics, 2009, 20, 87-91.	2.2	12
126	Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles. Applied Physics B: Lasers and Optics, 2009, 94, 239-242.	2.2	125

#	Article	IF	Citations
127	Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures. Journal of Applied Physics, 2009, 105, 103505.	2.5	48
128	Fabrication and Characterization of GeO2-PbO Optical Waveguides. ECS Transactions, 2009, 23, 507-513.	0.5	0
129	Eu3+ luminescence in tellurite glasses with gold nanostructures. Optics Communications, 2008, 281, 108-112.	2.1	103
130	Piezooptical effects in the tellurite glasses doped by europium and gold. Optics Communications, 2008, 281, 3721-3725.	2.1	23
131	Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles. Journal of Applied Physics, 2008, 103, .	2.5	63
132	Luminescence of Tb3+ doped TeO2–ZnO–Na2O–PbO glasses containing silver nanoparticles. Journal of Applied Physics, 2008, 104, .	2.5	43
133	Effect of the ytterbium concentration on the upconversion luminescence of Yb3+/Er3+ co-doped PbO–GeO2–Ga2O3 glasses. Journal of Non-Crystalline Solids, 2008, 354, 4755-4759.	3.1	37
134	Increasing Er[sup 3+] Up-Conversion Intensities By Co-Doping Telluride Glasses With Yb[sup 3+]. AIP Conference Proceedings, 2008, , .	0.4	0
135	Near-infrared third-order nonlinearity of PbO–GeO2 films containing Cu and Cu2O nanoparticles. Applied Physics Letters, 2008, 92, .	3.3	31
136	Frequency upconversion in Er3+ doped PbO–GeO2 glasses containing metallic nanoparticles. Applied Physics Letters, 2007, 90, 081913.	3.3	136
137	Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses. Journal of Applied Physics, 2007, 102, .	2.5	108
138	Photoinduced non-linear optics of Eu2O3DOPED TeO2–GeO2–PbO glasses. Journal Physics D: Applied Physics, 2007, 40, 1642-1645.	2.8	8
139	Thermo-optical parameters of tellurite glasses doped with Yb3+. Journal Physics D: Applied Physics, 2007, 40, 4073-4077.	2.8	11
140	Giant third-order nonlinearity of lead and germanium based films in the visible and in the infrared. Journal of Applied Physics, 2007, 101, 066103.	2.5	17
141	Femtosecond nonlinear optical properties of lead-germanium oxide amorphous films. Applied Physics Letters, 2007, 90, 231906.	3.3	27
142	Enhancement of second-order optical susceptibilities of Er doped germanate glasses. Optics Communications, 2007, 269, 148-151.	2.1	24
143	Photoinduced second-order optical susceptibilities of Er2O3 doped TeO2–GeO2–PbO glasses. Optics Communications, 2007, 274, 461-465.	2.1	17
144	Optical properties of Er3+ doped GeO2–PbO glass: Effect of doping with Bi2O3. Optics Communications, 2007, 269, 356-361.	2.1	25

#	Article	IF	Citations
145	Evaluation of laser level populations of erbium-doped glasses. Journal of Luminescence, 2007, 124, 200-206.	3.1	27
146	DSC and non-linear optical monitoring of the glass transitions in GeO2–PbO doped by erbium. Materials Letters, 2007, 61, 2943-2946.	2.6	9
147	Near infrared and blue cooperative emissions in Yb3+-doped GeO2–PbO glasses. Journal of Non-Crystalline Solids, 2006, 352, 56-62.	3.1	14
148	Fabrication and characterization of Er3+-doped GeO2–PbO and GeO2–PbO–Bi2O3 glass fibers. Journal of Non-Crystalline Solids, 2006, 352, 3530-3534.	3.1	24
149	Thermal lens study of PbO–Bi2O3–Ga2O3–BaO glasses doped with Yb3+. Journal of Non-Crystalline Solids, 2006, 352, 3647-3652.	3.1	9
150	Laser spectroscopy of Nd3+-doped PbO–Bi2O3–Ga2O3–BaO glasses. Journal of Non-Crystalline Solids, 2006, 352, 3224-3229.	3.1	33
151	Compositional influence on spectroscopy properties of Yb3+-doped tellurite glasses. , 2006, , .		4
152	Blue cooperative luminescence properties in Yb3+ doped GeO2–PbO–Bi2O3 vitreous system for the production of thin films. Thin Solid Films, 2006, 515, 764-767.	1.8	14
153	Luminescence enhancement of Pb2+ ions in TeO2–PbO–GeO2 glasses containing silver nanostructures. Journal of Applied Physics, 2006, 99, 123522.	2.5	62
154	Femtosecond nonlinear optical properties of tellurite glasses. Applied Physics Letters, 2006, 89, 171917.	3.3	74
155	Cooperative Luminescence in TeO2-ZnO Glasses Doped with Yb3+., 2006,,.		1
156	Semiconductor characteristics of Nd doped PbO-Bi2O3-Ga2O3 films. Brazilian Journal of Physics, 2006, 36, 451-454.	1.4	4
157	Blue cooperative emission in Yb3+ - doped GeO2 - PbO glasses. Materials Research, 2006, 9, 21-24.	1.3	10
158	Study of paramagnetic and luminescence centers of microcline feldspar. Applied Radiation and Isotopes, 2005, 62, 231-236.	1.5	8
159	Spectroscopic properties of Yb3+ doped PbO–Bi2O3–Ga2O3 glasses for IR laser applications. Optical Materials, 2005, 27, 1576-1582.	3.6	28
160	Enhancement of Pr3+ luminescence in PbO–GeO2 glasses containing silver nanoparticles. Applied Physics Letters, 2005, 87, 241914.	3.3	135
161	Picosecond third-order nonlinearity of lead-oxide glasses in the infrared. Applied Physics Letters, 2005, 87, 221904.	3.3	25
162	Energy transfer in PbO-Bi2O3-Ga2O3 glasses codoped with Yb3+ and Er3+. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1255.	2.1	28

#	Article	lF	CITATIONS
163	Optical properties and infrared-to-visible upconversion in Er3+-doped GeO2–Bi2O3 and GeO2–PbO–Bi2O3 glasses. Journal of Non-Crystalline Solids, 2005, 351, 3468-3475.	3.1	38
164	Er3+ laser transition in PbO–PbF2–B2O3 glasses. Journal of Non-Crystalline Solids, 2004, 348, 94-97.	3.1	72
165	Up-conversion losses in Nd3+ doped lead fluoroborate glasses. Journal of Non-Crystalline Solids, 2004, 348, 98-102.	3.1	19
166	GeO2–PbO–Bi2O3 glasses doped with Yb3+ for laser applications. Journal of Non-Crystalline Solids, 2004, 348, 103-107.	3.1	28
167	Optical dating results of beachrock, eolic dunes and sediments applied to sea-level changes study. Journal of Luminescence, 2003, 102-103, 562-565.	3.1	26
168	Optical dating using feldspar from Quaternary alluvial and colluvial sediments from SE Brazilian Plateau, Brazil. Journal of Luminescence, 2003, 102-103, 566-570.	3.1	10
169	Lead fluoroborate glasses doped with Nd3+. Journal of Luminescence, 2003, 102-103, 101-105.	3.1	39
170	Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluorborate or heavy metal oxide. Journal of Luminescence, 2003, 102-103, 106-111.	3.1	31
171	Spectroscopic properties of heavy metal oxide glasses doped with erbium. Journal of Luminescence, 2003, 102-103, 91-95.	3.1	33
172	Spectroscopic properties of lead fluoroborate glasses codoped with Er^3+ and Yb^3+. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2921.	2.1	22
173	Spectroscopic properties of lead fluoroborate and heavy metal oxide glasses doped with Yb3+. Journal of Non-Crystalline Solids, 2002, 304, 233-237.	3.1	21
174	Lead fluoroborate glass doped with ytterbium. Journal of Alloys and Compounds, 2002, 344, 264-267.	5.5	14
175	Thermoluminescence and ESR centers of Fluorapatite crystal from Brazil., 2002, , 585-588.		0
176	Spectroscopic properties of lead fluoroborate glasses doped with ytterbium. Optics Express, 2001, 8, 585.	3.4	16
177	Glasses of heavy metal and gallium oxides doped with neodymium. Radiation Effects and Defects in Solids, 2001, 156, 371-375.	1.2	5
178	Study of the Thermoluminescence and Optical Stimulated Luminescence properties of quartz crystal. Radiation Effects and Defects in Solids, 2001, 154, 347-353.	1.2	1
179	Optical properties of Nd doped Bi2O3-PbO-Ga2O3 glasses. Optics Express, 2000, 6, 104.	3.4	50
180	Design of the main racetrack microtron accelerator end magnets of the Institute of Physics of University of São Paulo. Physical Review Special Topics: Accelerators and Beams, 1999, 2, .	1.8	1

#	Article	IF	CITATIONS
181	Magnetic field correction of the IFUSP RTM booster-end magnets. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 404, 181-184.	1.6	4
182	Correcting coils in end magnets of accelerators. Physical Review Special Topics: Accelerators and Beams, $1998,1,.$	1.8	2
183	The use of correcting coils in end magnets of accelerators. , 0, , .		1
184	Optimum Yb/sup 3+/ concentration in PbO-Bi/sub 2/O/sub 3/-Ga/sub 2/O/sub 3/ glasses for ultrashort las.er applications. , 0, , .		0
185	Study of neodymium laser transition in glasses and influence of up-conversion processes under diode pumping. , 0, , .		0