Martin Ryberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5647873/publications.pdf

Version: 2024-02-01

60 papers 7,526 citations

31 h-index

147801

138484 58 g-index

66 all docs

66
docs citations

66 times ranked 8908 citing authors

#	Article	IF	CITATIONS
1	The curse of the uncultured fungus. MycoKeys, 2022, 86, 177-194.	1.9	9
2	Paxilloboletus gen. nov., a new lamellate bolete genus from tropical Africa. Mycological Progress, 2022, 21, 243-256.	1.4	3
3	Amanita sect. Phalloideae: two interesting non-lethal species from West Africa. Mycological Progress, 2022, 21, 1.	1.4	5
4	Multigene phylogeny and taxonomic revision of Atheliales s.l.: Reinstatement of three families and one new family, Lobuliciaceae fam. nov Fungal Biology, 2021, 125, 239-255.	2.5	12
5	Long―and short―ead metabarcoding technologies reveal similar spatiotemporal structures in fungal communities. Molecular Ecology Resources, 2021, 21, 1833-1849.	4.8	16
6	Soil fungal communities of ectomycorrhizal dominated woodlands across West Africa. MycoKeys, 2021, 81, 45-68.	1.9	7
7	Three new species of Inosperma (Agaricales, Inocybaceae) from Tropical Africa. MycoKeys, 2021, 77, 97-116.	1.9	9
8	<p>Mallocybe africana (Inocybaceae, Fungi), the first species of Mallocybe described from Africa</p> . Phytotaxa, 2021, 478, 49-60.	0.3	8
9	ARBitR: an overlap-aware genome assembly scaffolder for linked reads. Bioinformatics, 2021, 37, 2203-2205.	4.1	15
10	Morphology, Multilocus Phylogeny, and Toxin Analysis Reveal Amanita albolimbata, the First Lethal Amanita Species From Benin, West Africa. Frontiers in Microbiology, 2020, 11, 599047.	3.5	4
11	Naming the untouchable $\hat{a} \in \mathbb{C}$ environmental sequences and niche partitioning as taxonomical evidence in fungi. IMA Fungus, 2020, 11, 23.	3.8	15
12	FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 2020, 105, 1-16.	12.3	387
13	Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32528-32534.	7.1	65
14	When mycologists describe new species, not all relevant information is provided (clearly enough). MycoKeys, 2020, 72, 109-128.	1.9	15
15	The genus Catathelasma (Catathelasmataceae, Basidiomycota) in China. MycoKeys, 2020, 62, 123-138.	1.9	1
16	Maintenance of High Genome Integrity over Vegetative Growth in the Fairy-Ring Mushroom Marasmius oreades. Current Biology, 2019, 29, 2758-2765.e6.	3.9	28
17	Host genetic variation strongly influences the microbiome structure and function in fungal fruitingâ€bodies. Environmental Microbiology, 2018, 20, 1641-1650.	3.8	23
18	Complex effects of mammalian grazing on extramatrical mycelial biomass in the Scandes forestâ€ŧundra ecotone. Ecology and Evolution, 2018, 8, 1019-1030.	1.9	13

#	Article	IF	CITATIONS
19	The genome and microbiome of a dikaryotic fungus (<i>Inocybe terrigena</i> , Inocybaceae) revealed by metagenomics. Environmental Microbiology Reports, 2018, 10, 155-166.	2.4	17
20	High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity, 2018, 90, 135-159.	12.3	450
21	Structure and function of the global topsoil microbiome. Nature, 2018, 560, 233-237.	27.8	1,370
22	New light on names and naming of dark taxa. MycoKeys, 2018, 30, 31-39.	1.9	39
23	Two new African siblings of Pulveroboletus ravenelii (Boletaceae). MycoKeys, 2018, 43, 115-130.	1.9	6
24	Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Diversity, 2017, 84, 75-99.	12.3	138
25	Overview of Phylogenetic Approaches to Mycorrhizal Biogeography, Diversity and Evolution. Ecological Studies, 2017, , 1-37.	1.2	7
26	Dating the emergence of truffle-like fungi in Australia, by using an augmented meta-analysis. Australian Systematic Botany, 2016, 29, 284.	0.9	8
27	Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Molecular Ecology, 2016, 25, 630-647.	3.9	108
28	Molecular operational taxonomic units as approximations of species in the light of evolutionary models and empirical data from Fungi. Molecular Ecology, 2015, 24, 5770-5777.	3.9	63
29	Global Multilocus Sequence Type Analysis of Chlamydia trachomatis Strains from 16 Countries. Journal of Clinical Microbiology, 2015, 53, 2172-2179.	3.9	46
30	Molecular phylogenetics and taxonomy in Psathyrellaceae (Agaricales) with focus on psathyrelloid species: introduction of three new genera and 18 new species. Mycological Progress, 2015, 14, 1.	1.4	40
31	Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, 2014, 67, 11-19.	12.3	123
32	Global biogeography of the ectomycorrhizal /sebacina lineage (<scp>F</scp> ungi,) Tj ETQq0 0 0 rgBT /Overlock 1 2014, 23, 4168-4183.	10 Tf 50 22 3.9	27 Td (<scp> 58</scp>
33	Improved software detection and extraction of ITS1 and <scp>ITS</scp> 2 from ribosomal <scp>ITS</scp> sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 2013, 4, 914-919.	5.2	868
34	The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. Journal of Ecology, 2013, 101, 1335-1344.	4.0	124
35	Evolution of the Toxins Muscarine and Psilocybin in a Family of Mushroom-Forming Fungi. PLoS ONE, 2013, 8, e64646.	2.5	52
36	Asynchronous origins of ectomycorrhizal clades of Agaricales. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2003-2011.	2.6	77

#	Article	IF	Citations
37	Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Molecular Ecology, 2012, 21, 4160-4170.	3.9	365
38	Tidying Up International Nucleotide Sequence Databases: Ecological, Geographical and Sequence Quality Annotation of ITS Sequences of Mycorrhizal Fungi. PLoS ONE, 2011, 6, e24940.	2.5	51
39	DEALING WITH INCOMPLETE TAXON SAMPLING AND DIVERSIFICATION OF A LARGE CLADE OF MUSHROOM-FORMING FUNGI. Evolution; International Journal of Organic Evolution, 2011, 65, 1862-1878.	2.3	25
40	Rethinking taxon sampling in the light of environmental sequencing. Cladistics, 2011, 27, 197-203.	3.3	23
41	Weak habitat specificity in ectomycorrhizal communities associated with Salix herbacea and Salix polaris in alpine tundra. Mycorrhiza, 2011, 21, 289-296.	2.8	33
42	DivBayes and SubT: exploring species diversification using Bayesian statistics. Bioinformatics, 2011, 27, 2439-2440.	4.1	4
43	An evolutionary perspective on morphological and ecological characters in the mushroom family Inocybaceae (Agaricomycotina, Fungi). Molecular Phylogenetics and Evolution, 2010, 55, 431-442.	2.7	49
44	An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecology, 2010, 3, 284-287.	1.6	194
45	An open source chimera checker for the fungal ITS region. Molecular Ecology Resources, 2010, 10, 1076-1081.	4.8	77
46	Ectomycorrhizal Diversity on Dryas octopetala and Salix reticulata in an Alpine Cliff Ecosystem. Arctic, Antarctic, and Alpine Research, 2009, 41, 506-514.	1.1	67
47	A software pipeline for processing and identification of fungal ITS sequences. Source Code for Biology and Medicine, 2009, 4, 1.	1.7	85
48	The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 2009, 296, 97-101.	1.8	246
49	An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a webâ€based tool for the exploration of fungal diversity. New Phytologist, 2009, 181, 471-477.	7.3	107
50	Mining metadata from unidentified ITS sequences in GenBank: A case study in Inocybe (Basidiomycota). BMC Evolutionary Biology, 2008, 8, 50.	3.2	144
51	Partial cutting reduces species richness of fungi on woody debris in oak-rich forests. Canadian Journal of Forest Research, 2008, 38, 1807-1816.	1.7	32
52	<i>Pseudolagarobasidium</i> (Basidiomycota): on the reinstatement of a genus of parasitic, saprophytic, and endophytic resupinate fungi. Botany, 2008, 86, 1319-1325.	1.0	17
53	Intraspecific <i>ITS</i> Variability in the Kingdom <i>Fungi</i> as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification. Evolutionary Bioinformatics, 2008, 4, EBO.S653.	1.2	673
54	Taxonomic Reliability of DNA Sequences in Public Sequence Databases: A Fungal Perspective. PLoS ONE, 2006, 1, e59.	2.5	508

#	Article	IF	Citations
55	Approaching the taxonomic affiliation of unidentified sequences in public databases—an example from the mycorrhizal fungi. BMC Bioinformatics, 2005, 6, 178.	2.6	74
56	Dead wood in semi-natural temperate broadleaved woodland: contribution of coarse and fine dead wood, attached dead wood and stumps. Forest Ecology and Management, 2004, 194, 235-248.	3.2	92
57	Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biological Conservation, 2004, 117, 1-10.	4.1	246
58	Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys, 0, 4, 37-63.	1.9	157
59	Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden). MycoKeys, 0, 16, 1-15.	1.9	16
60	Phylommand - a command line software package for phylogenetics. F1000Research, 0, 5, 2903.	1.6	2