Alexandros Nikas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5647845/publications.pdf

Version: 2024-02-01

44 papers

1,145 citations

393982 19 h-index 32 g-index

48 all docs 48 docs citations

48 times ranked

745 citing authors

#	Article	IF	CITATIONS
1	Sustainable energy transition readiness: A multicriteria assessment index. Renewable and Sustainable Energy Reviews, 2020, 131, 109988.	8.2	117
2	Decision support models in climate policy. European Journal of Operational Research, 2020, 280, 1-24.	3.5	84
3	A multi-model analysis of long-term emissions and warming implications of current mitigation efforts. Nature Climate Change, 2021, 11, 1055-1062.	8.1	69
4	From Integrated to Integrative: Delivering on the Paris Agreement. Sustainability, 2018, 10, 2299.	1.6	65
5	Barriers to and consequences of a solar-based energy transition in Greece. Environmental Innovation and Societal Transitions, 2020, 35, 383-399.	2.5	63
6	Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe. Energy, 2021, 215, 119153.	4.5	57
7	Pathways for the transition of the Polish power sector and associated risks. Environmental Innovation and Societal Transitions, 2020, 35, 271-291.	2.5	49
8	A group decision making tool for assessing climate policy risks against multiple criteria. Heliyon, 2018, 4, e00588.	1.4	41
9	The desirability of transitions in demand: Incorporating behavioural and societal transformations into energy modelling. Energy Research and Social Science, 2020, 70, 101780.	3.0	41
10	Managing stakeholder knowledge for the evaluation of innovation systems in the face of climate change. Journal of Knowledge Management, 2017, 21, 1013-1034.	3.2	36
11	Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets. Energy, 2019, 170, 818-831.	4.5	36
12	A semi-quantitative modelling application for assessing energy efficiency strategies. Applied Soft Computing Journal, 2019, 76, 140-155.	4.1	33
13	Challenges in the harmonisation of global integrated assessment models: A comprehensive methodology to reduce model response heterogeneity. Science of the Total Environment, 2021, 783, 146861.	3.9	32
14	Contested energy futures, conflicted rewards? Examining low-carbon transition risks and governance dynamics in China's built environment. Energy Research and Social Science, 2020, 59, 101306.	3.0	30
15	Sustainable and socially just transition to a post-lignite era in Greece: a multi-level perspective. Energy Sources, Part B: Economics, Planning and Policy, 2020, 15, 513-544.	1.8	30
16	Integrated policy assessment and optimisation over multiple sustainable development goals in Eastern Africa. Environmental Research Letters, 2019, 14, 094001.	2.2	27
17	Where is the EU headed given its current climate policy? A stakeholder-driven model inter-comparison. Science of the Total Environment, 2021, 793, 148549.	3.9	26
18	The importance of stakeholders in scoping risk assessmentsâ€"Lessons from low-carbon transitions. Environmental Innovation and Societal Transitions, 2020, 35, 400-413.	2.5	25

#	Article	IF	CITATIONS
19	Exploring opportunities and risks for RES-E deployment under Cooperation Mechanisms between EU and Western Balkans: A multi-criteria assessment. Renewable and Sustainable Energy Reviews, 2017, 80, 519-530.	8.2	22
20	Identifying optimal technological portfolios for European power generation towards climate change mitigation: A robust portfolio analysis approach. Utilities Policy, 2019, 57, 33-42.	2.1	21
21	A Detailed Overview and Consistent Classification of Climate-Economy Models., 2019,, 1-54.		21
22	A multiple-uncertainty analysis framework for integrated assessment modelling of several sustainable development goals. Environmental Modelling and Software, 2020, 131, 104795.	1.9	19
23	The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective. Energies, 2020, 13, 4994.	1.6	17
24	A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective. Renewable and Sustainable Energy Reviews, 2022, 156, 112022.	8.2	17
25	Al and Data Democratisation for Intelligent Energy Management. Energies, 2021, 14, 4341.	1.6	16
26	Many Miles to Paris: A Sectoral Innovation System Analysis of the Transport Sector in Norway and Canada in Light of the Paris Agreement. Sustainability, 2020, 12, 5832.	1.6	14
27	The Green Versus Green Trap and a Way Forward. Energies, 2020, 13, 5473.	1.6	14
28	A robust augmented $\hat{l}\mu$ -constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems. Operational Research, 2022, 22, 1291-1332.	1.3	13
29	APOLLO: A Fuzzy Multi-criteria Group Decision-Making Tool in Support of Climate Policy. International Journal of Computational Intelligence Systems, 2020, 13, 1539.	1.6	12
30	Coupling circularity performance and climate action: From disciplinary silos to transdisciplinary modelling science. Sustainable Production and Consumption, 2022, 30, 269-277.	5.7	11
31	Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research, Part D: Transport and Environment, 2021, 94, 102815.	3.2	10
32	Developing Robust Climate Policies: A Fuzzy Cognitive Map Approach. Profiles in Operations Research, 2016, , 239-263.	0.3	9
33	Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece. Energy Policy, 2022, 161, 112759.	4.2	9
34	Parameter analysis for sigmoid and hyperbolic transfer functions of fuzzy cognitive maps. Operational Research, 2022, 22, 5733-5763.	1.3	8
35	Wind repowering: Unveiling a hidden asset. Renewable and Sustainable Energy Reviews, 2022, 162, 112457.	8.2	7
36	Climate and sustainability co-governance in Kenya: A multi-criteria analysis of stakeholders' perceptions and consensus. Energy for Sustainable Development, 2022, 68, 457-471.	2.0	7

#	Article	IF	CITATIONS
37	Expert views on low-carbon transition strategies for the Dutch solar sector: A delay-based fuzzy cognitive mapping approach. IFAC-PapersOnLine, 2018, 51, 715-720.	0.5	6
38	A multi-criteria decision support framework for assessing seaport sustainability planning: the case of Piraeus. Maritime Policy and Management, 2023, 50, 1030-1056.	1.9	6
39	Involve citizens in climate-policy modelling. Nature, 2021, 590, 389-389.	13.7	5
40	Towards Sustainable Development and Climate Co-governance: A Multicriteria Stakeholders' Perspective. Multiple Criteria Decision Making, 2021, , 39-74.	0.6	5
41	A predictive model and country risk assessment for COVID-19: An application of the Limited Failure Population concept. Chaos, Solitons and Fractals, 2020, 140, 110240.	2.5	4
42	International Cooperation for Clean Electricity: A UTASTAR Application in Energy Policy. Multiple Criteria Decision Making, 2018, , 163-186.	0.6	3
43	Integrating Integrated Assessment Modelling in Support of the Paris Agreement: The I2AM PARIS Platform. , 2021, , .		2
44	Framing risks and uncertainties associated with low-carbon pathways. , 2019, , 10-22.		0