Aurore Carre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5647831/publications.pdf

Version: 2024-02-01

28	1,063	19	29
papers	citations	h-index	g-index
30	30	30	1067 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Five new TTF1/NKX2.1 mutations in brain-lung-thyroid syndrome: rescue by PAX8 synergism in one case. Human Molecular Genetics, 2009, 18, 2266-2276.	2.9	187
2	<i>NKX2-1</i> mutations leading to surfactant protein promoter dysregulation cause interstitial lung disease in "Brain-Lung-Thyroid Syndrome― Human Mutation, 2010, 31, E1146-E1162.	2.5	108
3	Sodium/Iodide Symporter (NIS) Gene Expression Is the Limiting Step for the Onset of Thyroid Function in the Human Fetus. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 70-76.	3.6	74
4	NADPH Oxidase NOX4 Is a Critical Mediator of BRAF ^{V600E} -Induced Downregulation of the Sodium/Iodide Symporter in Papillary Thyroid Carcinomas. Antioxidants and Redox Signaling, 2017, 26, 864-877.	5.4	63
5	Polymorphic length of FOXE1 alanine stretch: evidence for genetic susceptibility to thyroid dysgenesis. Human Genetics, 2007, 122, 467-476.	3.8	61
6	Linkage and mutational analysis of familial thyroid dysgenesis demonstrate genetic heterogeneity implicating novel genes. European Journal of Human Genetics, 2005, 13, 232-239.	2.8	49
7	<scp>TUBB $<$ /scp> 1 mutations cause thyroid dysgenesis associated with abnormal platelet physiology. EMBO Molecular Medicine, 2018, 10, .	6.9	47
8	Hes1 Is Required for Appropriate Morphogenesis and Differentiation during Mouse Thyroid Gland Development. PLoS ONE, 2011, 6, e16752.	2.5	40
9	A Novel <i>FOXE1</i> Mutation (R73S) in Bamforth–Lazarus Syndrome Causing Increased Thyroidal Gene Expression. Thyroid, 2014, 24, 649-654.	4.5	38
10	Mutations in BOREALIN cause thyroid dysgenesis. Human Molecular Genetics, 2017, 26, ddw419.	2.9	37
11	New genetics in congenital hypothyroidism. Endocrine, 2021, 71, 696-705.	2.3	33
12	An Inactivating Mutation within the First Extracellular Loop of the Thyrotropin Receptor Impedes Normal Posttranslational Maturation of the Extracellular Domain. Endocrinology, 2009, 150, 1043-1050.	2.8	32
13	When an Intramolecular Disulfide Bridge Governs the Interaction of DUOX2 with Its Partner DUOXA2. Antioxidants and Redox Signaling, 2015, 23, 724-733.	5.4	29
14	Update of Thyroid Developmental Genes. Endocrinology and Metabolism Clinics of North America, 2016, 45, 243-254.	3.2	29
15	Molecular Mechanisms of Thyroid Dysgenesis. Hormone Research in Paediatrics, 2004, 62, 14-21.	1.8	27
16	New Cases of Isolated Congenital Central Hypothyroidism Due to Homozygous Thyrotropin Beta Gene Mutations: A Pitfall to Neonatal Screening. Thyroid, 2010, 20, 639-645.	4.5	24
17	Further delineation of the phenotype of chromosome $14q13$ deletions: (positional) involvement of $<$ i>FOXG1 $<$ i>appears the main determinant of phenotype severity, with no evidence for a holoprosencephaly locus. Journal of Medical Genetics, 2012, 49, 366-372.	3.2	24
18	Down Syndrome and Nonautoimmune Hypothyroidisms in Neonates and Infants. Hormone Research in Paediatrics, 2015, 83, 126-131.	1.8	23

#	Article	lF	CITATIONS
19	Thyroid Hypoplasia in Congenital Hypothyroidism Associated with Thyroid Peroxidase Mutations. Thyroid, 2018, 28, 941-944.	4.5	23
20	Multiplex Ligation-Dependent Probe Amplification Improves the Detection Rate of <i>NKX2.1</i> Mutations in Patients Affected by Brain-Lung-Thyroid Syndrome. Hormone Research in Paediatrics, 2012, 77, 146-151.	1.8	20
21	DYRK1A BAC Transgenic Mouse: A New Model of Thyroid Dysgenesis in Down Syndrome. Endocrinology, 2015, 156, 1171-1180.	2.8	20
22	Pregnancy in women heterozygous for MCT8 mutations: risk of maternal hypothyroxinemia and fetal care. European Journal of Endocrinology, 2011, 164, 309-314.	3.7	19
23	Thyroid Function in Fetuses with Down Syndrome. Hormone Research in Paediatrics, 2012, 78, 88-93.	1.8	19
24	High Diagnostic Yield of Targeted Next-Generation Sequencing in a Cohort of Patients With Congenital Hypothyroidism Due to Dyshormonogenesis. Frontiers in Endocrinology, 2020, $11,545339$.	3.5	17
25	Genetics of congenital hypothyroidism: Modern concepts. Pediatric Investigation, 2022, 6, 123-134.	1.4	8
26	Molecular Insights into the Possible Role of Kir4.1 and Kir5.1 in Thyroid Hormone Biosynthesis. Hormone Research in Paediatrics, 2015, 83, 141-147.	1.8	5
27	Functional characterization of the novel sequence variant p.S304R in the hinge region of TSHR in a congenital hypothyroidism patients and analogy with other formerly known mutations of this gene portion. Journal of Pediatric Endocrinology and Metabolism, 2015, 28, 777-84.	0.9	4
28	Ex vivo model for elucidating the functional and structural differentiation of the embryonic mouse thyroid. Molecular and Cellular Endocrinology, 2020, 510, 110834.	3.2	2