
Javier Moral-Vico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5647825/publications.pdf Version: 2024-02-01

LAVIED MODAL-VICO

#	Article	IF	CITATIONS
1	Conversion of Carbon Dioxide into Methanol Using Cu–Zn Nanostructured Materials as Catalysts. Nanomaterials, 2022, 12, 999.	1.9	13
2	Enhancement of Anaerobic Digestion with Nanomaterials: A Mini Review. Energies, 2022, 15, 5087.	1.6	7
3	Sustained effect of zero-valent iron nanoparticles under semi-continuous anaerobic digestion of sewage sludge: Evolution of nanoparticles and microbial community dynamics. Science of the Total Environment, 2021, 777, 145969.	3.9	30
4	In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions. Renewable Energy, 2021, 180, 372-382.	4.3	17
5	Repeatability of low scan rate cyclic voltammetry in bioelectrochemical systems and effects on their performance. Journal of Chemical Technology and Biotechnology, 2020, 95, 1533-1541.	1.6	9
6	The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Research, 2019, 159, 490-500.	5.3	107
7	Microstructure and electrical transport in electrodeposited Bi films. Journal of Electroanalytical Chemistry, 2019, 832, 40-47.	1.9	7
8	Controlling Nerve Growth with an Electric Field Induced Indirectly in Transparent Conductive Substrate Materials. Advanced Healthcare Materials, 2018, 7, e1800473.	3.9	29
9	Biosafety assessment of conducting nanostructured materials by using co-cultures of neurons and astrocytes. NeuroToxicology, 2018, 68, 115-125.	1.4	16
10	Comparison of Different Mo/Au TES Designs for Radiation Detectors. Journal of Low Temperature Physics, 2018, 193, 282-287.	0.6	3
11	Development of Cryogenic X-Ray Detectors Based on Mo/Au Transition Edge Sensors. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	6
12	Core–shell Au/CeO ₂ nanoparticles supported in UiO-66 beads exhibiting full CO conversion at 100 °C. Journal of Materials Chemistry A, 2017, 5, 13966-13970.	5.2	24
13	Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane. Science of the Total Environment, 2017, 595, 51-62.	3.9	133
14	Fast determination of viable bacterial cells in milk samples using impedimetric sensor and a novel calibration method. Electrochimica Acta, 2016, 198, 249-258.	2.6	9
15	Solid contact ion sensor with conducting polymer layer copolymerized with the ion-selective membrane for determination of calcium in blood serum. Analytica Chimica Acta, 2016, 943, 50-57.	2.6	29
16	Dual chronoamperometric detection of enzymatic biomarkers using magnetic beads and a low-cost flow cell. Biosensors and Bioelectronics, 2015, 69, 328-336.	5.3	28
17	Nanocomposites of iridium oxide and conducting polymers as electroactive phases in biological media. Acta Biomaterialia, 2014, 10, 2177-2186.	4.1	21
18	Dynamic electrodeposition of aminoacid-polypyrrole on aminoacid-PEDOT substrates: Conducting polymer bilayers as electrodes in neural systems. Electrochimica Acta, 2013, 111, 250-260.	2.6	22

#	Article	IF	CITATIONS
19	Iridium Oxohydroxide, a Significant Member in the Family of Iridium Oxides. Stoichiometry, Characterization, and Implications in Bioelectrodes. Journal of Physical Chemistry C, 2012, 116, 5155-5168.	1.5	73
20	Formation of Porous Alumina Patterns on Silicon. ECS Transactions, 2007, 3, 85-93.	0.3	9
21	Cobalt Nanocomposites as Catalysts for Carbon Dioxide Conversion to Methanol. , 0, , .		0