
Daniel Kerschensteiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5647611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AMIGO1 Promotes Axon Growth and Territory Matching in the Retina. Journal of Neuroscience, 2022, 42, 2678-2689.	3.6	2
2	Feature Detection by Retinal Ganglion Cells. Annual Review of Vision Science, 2022, 8, 135-169.	4.4	32
3	Cell-type-specific binocular vision guides predation in mice. Neuron, 2021, 109, 1527-1539.e4.	8.1	59
4	Dendritic and parallel processing of visual threats in the retina control defensive responses. Science Advances, 2020, 6, .	10.3	30
5	Homeostatic Plasticity Shapes the Retinal Response to Photoreceptor Degeneration. Current Biology, 2020, 30, 1916-1926.e3.	3.9	30
6	Efficient Coding by Midget and Parasol Ganglion Cells in the Human Retina. Neuron, 2020, 107, 656-666.e5.	8.1	37
7	Mammalian Retina Development. , 2020, , 234-251.		2
8	AMIGO2 Scales Dendrite Arbors in the Retina. Cell Reports, 2019, 29, 1568-1578.e4.	6.4	16
9	Elevating Growth Factor Responsiveness and Axon Regeneration by Modulating Presynaptic Inputs. Neuron, 2019, 103, 39-51.e5.	8.1	89
10	A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields. Cell Reports, 2018, 22, 1462-1472.	6.4	38
11	Synapse maintenance and restoration in the retina by NGL2. ELife, 2018, 7, .	6.0	23
12	Homeostatic plasticity in neural development. Neural Development, 2018, 13, 9.	2.4	83
13	Parallel Processing of Negative Feedback: E Unum Pluribus. Neuron, 2018, 99, 5-7.	8.1	2
14	Homeostatic Plasticity Shapes Cell-Type-Specific Wiring in the Retina. Neuron, 2017, 94, 656-665.e4.	8.1	44
15	Inhibitory Control of Feature Selectivity in an Object Motion Sensitive Circuit of the Retina. Cell Reports, 2017, 19, 1343-1350.	6.4	31
16	Aligning a Synapse. Neuron, 2017, 93, 1241-1243.	8.1	1
17	Organization of the dorsal lateral geniculate nucleus in the mouse. Visual Neuroscience, 2017, 34, E008.	1.0	67
18	Homeostatic plasticity shapes the visual system's first synapse. Nature Communications, 2017, 8, 1220.	12.8	24

2

#	Article	IF	CITATIONS
19	Visual thalamus, "it's complicated― Visual Neuroscience, 2017, 34, E018.	1.0	1
20	Local processing in neurites of VGluT3-expressing amacrine cells differentially organizes visual information. ELife, 2017, 6, .	6.0	23
21	Target-Specific Clycinergic Transmission from VGluT3-Expressing Amacrine Cells Shapes Suppressive Contrast Responses in the Retina. Cell Reports, 2016, 15, 1369-1375.	6.4	60
22	Dendritic mitochondria reach stable positions during circuit development. ELife, 2016, 5, e11583.	6.0	74
23	Ambient illumination switches contrast preference of specific retinal processing streams. Journal of Neurophysiology, 2015, 114, 540-550.	1.8	38
24	Morphology and function of three VIP-expressing amacrine cell types in the mouse retina. Journal of Neurophysiology, 2015, 114, 2431-2438.	1.8	24
25	Superior Colliculus Does Play Dice. Neuron, 2015, 87, 1121-1123.	8.1	0
26	Genetically Identified Suppressed-by-Contrast Retinal Ganglion Cells Reliably Signal Self-Generated Visual Stimuli. Journal of Neuroscience, 2015, 35, 10815-10820.	3.6	61
27	An excitatory amacrine cell detects object motion and provides feature-selective input to ganglion cells in the mouse retina. ELife, 2015, 4, .	6.0	83
28	Integrated photoacoustic, confocal, and two-photon microscope. Journal of Biomedical Optics, 2014, 19, 036002.	2.6	36
29	Spontaneous Network Activity and Synaptic Development. Neuroscientist, 2014, 20, 272-290.	3.5	57
30	Retrograde Plasticity and Differential Competition of Bipolar Cell Dendrites and Axons in the Developing Retina. Current Biology, 2014, 24, 2301-2306.	3.9	21
31	Intersecting Circuits Generate Precisely Patterned Retinal Waves. Neuron, 2013, 79, 322-334.	8.1	48
32	NGL-2 Regulates Pathway-Specific Neurite Growth and Lamination, Synapse Formation, and Signal Transmission in the Retina. Journal of Neuroscience, 2013, 33, 11949-11959.	3.6	73
33	An Allosteric Regulator of R7-RGS Proteins Influences Light-Evoked Activity and Glutamatergic Waves in the Inner Retina. PLoS ONE, 2013, 8, e82276.	2.5	2
34	The spatial structure of a nonlinear receptive field. Nature Neuroscience, 2012, 15, 1572-1580.	14.8	198
35	Development of Cell Type-Specific Connectivity Patterns of Converging Excitatory Axons in the Retina. Neuron, 2011, 71, 1014-1021.	8.1	77
36	Circuit Assembly: The Repulsive Side of Lamination. Current Biology, 2011, 21, R163-R166.	3.9	1

#	Article	IF	CITATIONS
37	Neurotransmission selectively regulates synapse formation in parallel circuits in vivo. Nature, 2009, 460, 1016-1020.	27.8	164
38	Genetic Control of Circuit Function: <i>Vsx1</i> and <i>Irx5</i> Transcription Factors Regulate Contrast Adaptation in the Mouse Retina. Journal of Neuroscience, 2008, 28, 2342-2352.	3.6	35