
Dan Y Lewitus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5647534/publications.pdf Version: 2024-02-01

DAN Y LEWITUS

#	Article	IF	CITATIONS
1	Reinforcement of poly (methyl methacrylate) by WS2 nanotubes towards antiballistic applications. Composites Science and Technology, 2021, 207, 108736.	7.8	12
2	Polycaprolactoneâ€based hotmelt adhesive for herniaâ€mesh fixation. Polymers for Advanced Technologies, 2020, 31, 3194-3201.	3.2	4
3	Full-Spectrum <i>Cannabis</i> Extract Microdepots Support Controlled Release of Multiple Phytocannabinoids for Extended Therapeutic Effect. ACS Applied Materials & Interfaces, 2020, 12, 23707-23716.	8.0	11
4	The Grafting of Multifunctional Antithrombogenic Chemical Networks on Polyurethane Intravascular Catheters. Polymers, 2020, 12, 1131.	4.5	6
5	Three-dimensional printing for drug delivery devices: a state-of-the-art survey. Journal of 3D Printing in Medicine, 2019, 3, 95-109.	2.0	4
6	Antimicrobial active packaging combining essential oils mixture: Migration and odor control study. Polymers for Advanced Technologies, 2019, 30, 2558-2566.	3.2	9
7	Controlling drug delivery from polymer microspheres by exploiting the complex interrelationship of excipient and drug crystallization. Journal of Applied Polymer Science, 2019, 136, 47227.	2.6	12
8	SPHRINT – Printing Drug Delivery Microspheres from Polymeric Melts. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 398-406.	4.3	16
9	Polyastaxanthin-based coatings reduce bacterial colonization in vivo. Materialia, 2018, 3, 15-20.	2.7	5
10	Enhanced thermal conductivity of photopolymerizable composites using surface modified hexagonal boron nitride fillers. Composites Science and Technology, 2017, 152, 36-45.	7.8	32
11	Astaxanthin-based polymers as new antimicrobial compounds. Polymer Chemistry, 2017, 8, 4182-4189.	3.9	28
12	Bioactive agarose carbonâ€nanotube composites are capable of manipulating brain–implant interface. Journal of Applied Polymer Science, 2014, 131, .	2.6	16
13	Molecular design and evaluation of biodegradable polymers using a statistical approach. Journal of Materials Science: Materials in Medicine, 2013, 24, 2529-2535.	3.6	9
14	Designing Tyrosine-Derived Polycarbonate Polymers for Biodegradable Regenerative Type Neural Interface Capable of Neural Recording. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 204-212.	4.9	25
15	The fate of ultrafast degrading polymeric implants in the brain. Biomaterials, 2011, 32, 5543-5550.	11.4	26
16	Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. Advanced Functional Materials, 2011, 21, 2624-2632.	14.9	95
17	Ultrafast resorbing polymers for use as carriers for cortical neural probes. Acta Biomaterialia, 2011, 7, 2483-2491.	8.3	87
18	Computational modeling of inÂvitro biological responses on polymethacrylate surfaces. Polymer, 2011, 52, 2650-2660.	3.8	9