
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5647209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	4D Multimaterial Printing of Programmable and Selective Lightâ€Activated Shapeâ€Memory Structures with Embedded Gold Nanoparticles. Advanced Materials Technologies, 2022, 7, 2101058.	5.8	16
2	Metallic core-shell nanoparticles for conductive coatings and printing. Advances in Colloid and Interface Science, 2022, 299, 102578.	14.7	25
3	Wood Warping Composite by 3D Printing. Polymers, 2022, 14, 733.	4.5	5
4	Novel Transparent TiO ₂ /AgNW–Si(NH ₂)/PET Hybrid Films for Flexible Smart Windows. ACS Applied Materials & Interfaces, 2022, 14, 21613-21622.	8.0	17
5	One-step double network hydrogels of photocurable monomers and bacterial cellulose fibers. Carbohydrate Polymers, 2022, 294, 119778.	10.2	9
6	3D Printing Materials for Soft Robotics. Advanced Materials, 2021, 33, e2003387.	21.0	173
7	Functional Dyes in Polymeric 3D Printing: Applications and Perspectives. , 2021, 3, 1-17.		58
8	Quantum Photoinitiators: Toward Emerging Photocuring Applications. Journal of the American Chemical Society, 2021, 143, 577-587.	13.7	28
9	3D printing of highly stretchable hydrogel with diverse UV curable polymers. Science Advances, 2021, 7, .	10.3	233
10	3D-printed self-healing hydrogels via Digital Light Processing. Nature Communications, 2021, 12, 2462.	12.8	122
11	Solutionâ€Processed Semitransparent CZTS Thinâ€Film Solar Cells via Cation Substitution and Rapid Thermal Annealing. Solar Rrl, 2021, 5, 2100131.	5.8	12
12	3D Printing of Cellulose Nanocrystal-Loaded Hydrogels through Rapid Fixation by Photopolymerization. Langmuir, 2021, 37, 6451-6458.	3.5	21
13	Particle-free compositions for printing dense 3D ceramic structures by digital light processing. Virtual and Physical Prototyping, 2021, 16, 255-266.	10.4	8
14	Fabrication of Perovskite Solar Cells with Digital Control of Transparency by Inkjet Printing. ACS Applied Materials & Interfaces, 2021, 13, 30524-30532.	8.0	29
15	Novel Nd–Mo co-doped SnO2/α-WO3 electrochromic materials (ECs) for enhanced smart window performance. Ceramics International, 2021, 47, 18433-18442.	4.8	21
16	Nd–Nb Co-doped SnO ₂ /α-WO ₃ Electrochromic Materials: Enhanced Stability and Switching Properties. ACS Omega, 2021, 6, 26251-26261.	3.5	10
17	Anisotropic localized surface plasmon resonance of vanadium dioxide rods in flexible thermochromic film towards multifunctionality. Solar Energy Materials and Solar Cells, 2021, 230, 111163.	6.2	16
18	3D-printing of ceramic aerogels by spatial photopolymerization. Applied Materials Today, 2021, 24, 101083.	4.3	15

#	Article	IF	CITATIONS
19	Manipulating atomic defects in plasmonic vanadium dioxide for superior solar and thermal management. Materials Horizons, 2021, 8, 1700-1710.	12.2	13
20	Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators. Nature Communications, 2021, 12, 6080.	12.8	23
21	Multimodal Approach towards Large Area Fully Semitransparent Perovskite Solar Module. Advanced Energy Materials, 2021, 11, 2102276.	19.5	11
22	Pre-Programmed Tri-Layer Electro-Thermal Actuators Composed of Shape Memory Polymer and Carbon Nanotubes. Soft Robotics, 2020, 7, 123-129.	8.0	33
23	Facile Combined Experimental and Computational Study: g-C ₃ N ₄ @PDMS-Assisted Knoevenagel Condensation Reaction under Phase Transfer Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 2350-2360.	6.7	12
24	Electrochromic smart glass coating on functional nano-frameworks for effective building energy conservation. Materials Today Energy, 2020, 18, 100496.	4.7	21
25	Fabrication of Selfâ€Cleaning CNTâ€Based Nearâ€Perfect Solar Absorber Coating for Nonâ€Evacuated Concentrated Solar Power Applications. Energy Technology, 2020, 8, 2000699.	3.8	8
26	All 3D Printed Stretchable Piezoelectric Nanogenerator for Self-Powered Sensor Application. Sensors, 2020, 20, 6748.	3.8	21
27	CNT-Based Solar Thermal Coatings: Absorptance vs. Emittance. Coatings, 2020, 10, 1101.	2.6	4
28	Fabrication of Second Skin from Keratin and Melanin. Polymers, 2020, 12, 2568.	4.5	4
29	3D Printing of Ordered Mesoporous Silica Complex Structures. Nano Letters, 2020, 20, 6598-6605.	9.1	30
30	High-Complexity WO3-Based Catalyst with Multi-Catalytic Species via 3D Printing. Catalysts, 2020, 10, 840.	3.5	16
31	3D Printing of Micrometerâ€sized Transparent Ceramics with Onâ€Demand Opticalâ€Gain Properties. Advanced Materials, 2020, 32, e2001675.	21.0	40
32	All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy, 2020, 72, 104676.	16.0	161
33	Multi-Material 3D Printed Shape Memory Polymer with Tunable Melting and Glass Transition Temperature Activated by Heat or Light. Polymers, 2020, 12, 710.	4.5	34
34	Over 6% Efficient Cu(In,Ga)Se ₂ Solar Cell Screen-Printed from Oxides on Fluorine-Doped Tin Oxide. ACS Applied Energy Materials, 2020, 3, 3120-3126.	5.1	13
35	Nuclear wastewater decontamination by 3D-Printed hierarchical zeolite monoliths. RSC Advances, 2020, 10, 5766-5776.	3.6	42
36	4D Printed Hydrogels: Fabrication, Materials, and Applications. Advanced Materials Technologies, 2020, 5, 2000034.	5.8	75

#	Article	IF	CITATIONS
37	Synthesis through 3D printing: formation of 3D coordination polymers. RSC Advances, 2020, 10, 14812-14817.	3.6	17
38	Cephalopod-inspired versatile design based on plasmonic VO2 nanoparticle for energy-efficient mechano-thermochromic windows. Nano Energy, 2020, 73, 104785.	16.0	74
39	A New Approach to 3D Printing Dense Ceramics by Ceramic Precursor Binders. Advanced Engineering Materials, 2019, 21, 1900604.	3.5	30
40	Electrodeposition of amorphous WO ₃ on SnO ₂ –TiO ₂ inverse opal nano-framework for highly transparent, effective and stable electrochromic smart window. RSC Advances, 2019, 9, 16730-16737.	3.6	13
41	3D Printed Ferrofluid Based Soft Actuators. , 2019, , .		5
42	Conductive nanomaterials for 2D and 3D printed flexible electronics. Chemical Society Reviews, 2019, 48, 1712-1740.	38.1	309
43	Efficient Near Infrared Modulation with High Visible Transparency Using SnO ₂ –WO ₃ Nanostructure for Advanced Smart Windows. Advanced Optical Materials, 2019, 7, 1801389.	7.3	38
44	A clear solution: semiconductor nanocrystals as photoinitiators in solvent free polymerization. Nanoscale, 2019, 11, 11209-11216.	5.6	19
45	Additive Manufacturing of 3D Structures Composed of Wood Materials. Advanced Materials Technologies, 2019, 4, 1900158.	5.8	32
46	Direct Cryo Writing of Aerogels Via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall. Colloids and Interfaces, 2019, 3, 46.	2.1	43
47	Electrophoretic deposition of reduced graphene oxide thin films for reduction of cross-sectional heat diffusion in glass windows. Journal of Science: Advanced Materials and Devices, 2019, 4, 252-259.	3.1	12
48	Electrochromic Materials: Efficient Near Infrared Modulation with High Visible Transparency Using SnO 2 –WO 3 Nanostructure for Advanced Smart Windows (Advanced Optical Materials 8/2019). Advanced Optical Materials, 2019, 7, 1970031.	7.3	1
49	3D Printing of a Thermo―and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities. Advanced Functional Materials, 2019, 29, 1808424.	14.9	35
50	Self-Assembled VO ₂ Mesh Film-Based Resistance Switches with High Transparency and Abrupt ON/OFF Ratio. ACS Omega, 2019, 4, 19635-19640.	3.5	9
51	Thin Copper Flakes for Conductive Inks Prepared by Decomposition of Copper Formate and Ultrafine Wet Milling. Advanced Materials Technologies, 2019, 4, 1800426.	5.8	23
52	Directed assembly of nanoparticles into continuous microstructures by standing surface acoustic waves. Journal of Colloid and Interface Science, 2019, 536, 701-709.	9.4	48
53	Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. Journal of Materials Chemistry B, 2018, 6, 3246-3253.	5.8	173
54	Direct inkjet-patterning of energy efficient flexible electrochromics. Nano Energy, 2018, 49, 147-154.	16.0	78

#	Article	IF	CITATIONS
55	Effect of Carboxylic Acids on Reactive Transfer Printing of Copper Formate Ink. MRS Advances, 2018, 3, 261-267.	0.9	0
56	Binuclear Copper Complex Ink as a Seed for Electroless Copper Plating Yielding >70% Bulk Conductivity on 3DÂPrinted Polymers. Advanced Materials Interfaces, 2018, 5, 1701285.	3.7	19
57	Fully Printed Flexible Smart Hybrid Hydrogels. Advanced Functional Materials, 2018, 28, 1705365.	14.9	121
58	Hydrolytically Stable MOF in 3Dâ€Printed Structures. Advanced Sustainable Systems, 2018, 2, 1700150.	5.3	54
59	Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity. ACS Applied Materials & Interfaces, 2018, 10, 3082-3093.	8.0	25
60	Recent Progress in Solutionâ€Processed Copperâ€Chalcogenide Thinâ€Film Solar Cells. Energy Technology, 2018, 6, 46-59.	3.8	43
61	Vanadium dioxide for energy conservation and energy storage applications: Synthesis and performance improvement. Applied Energy, 2018, 211, 200-217.	10.1	118
62	Hot dipping post treatment for improved efficiency in micro patterned semi-transparent perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 23787-23796.	10.3	21
63	Hybrid Materials for Functional 3D Printing. Advanced Materials Interfaces, 2018, 5, 1800996.	3.7	42
64	Fully 2D and 3D printed anisotropic mechanoluminescent objects and their application for energy harvesting in the dark. Materials Horizons, 2018, 5, 708-714.	12.2	53
65	TiO ₂ –WO ₃ core–shell inverse opal structure with enhanced electrochromic performance in NIR region. Journal of Materials Chemistry C, 2018, 6, 8488-8494.	5.5	34
66	Novel Materials for 3D Printing by Photopolymerization. Advanced Materials, 2018, 30, e1706344.	21.0	367
67	Additive Manufacturing of Transparent Silica Glass from Solutions. ACS Applied Materials & Interfaces, 2018, 10, 18879-18885.	8.0	97
68	Conductivity Enhancement of Transparent 2D Carbon Nanotube Networks Occurs by Resistance Reduction in All Junctions. Journal of Physical Chemistry C, 2018, 122, 14872-14876.	3.1	14
69	3Dâ€Printed Organic–Ceramic Complex Hybrid Structures with High Silica Content. Advanced Science, 2018, 5, 1800061.	11.2	55
70	Plasma-Induced Decomposition of Copper Complex Ink for the Formation of Highly Conductive Copper Tracks on Heat-Sensitive Substrates. ACS Applied Materials & Interfaces, 2017, 9, 8766-8773.	8.0	67
71	Self-Reducing Copper Precursor Inks and Photonic Additive Yield Conductive Patterns under Intense Pulsed Light. ACS Omega, 2017, 2, 573-581.	3.5	36
72	Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Advanced Materials, 2017, 29, 1606000.	21.0	480

#	Article	IF	CITATIONS
73	Revealing the Role of Potassium Treatment in CZTSSe Thin Film Solar Cells. Chemistry of Materials, 2017, 29, 4273-4281.	6.7	43
74	Rapid Three-Dimensional Printing in Water Using Semiconductor–Metal Hybrid Nanoparticles as Photoinitiators. Nano Letters, 2017, 17, 4497-4501.	9.1	83
75	Stability of nano-sized permethrin in its colloidal state and its effect on the physiological and biochemical profile of <i>Culex tritaeniorhynchus</i> larvae. Bulletin of Entomological Research, 2017, 107, 676-688.	1.0	20
76	Inkjet printing and rapid ebeam sintering enable formation of highly conductive patterns in roll to roll process. RSC Advances, 2017, 7, 15463-15467.	3.6	11
77	Hydroprinting Conductive Patterns onto 3D Structures. Advanced Materials Technologies, 2017, 2, 1600289.	5.8	58
78	3D printing of responsive hydrogels for drug-delivery systems. Journal of 3D Printing in Medicine, 2017, 1, 219-229.	2.0	71
79	Revealing Cation-Exchange-Induced Phase Transformations in Multielemental Chalcogenide Nanoparticles. Chemistry of Materials, 2017, 29, 9192-9199.	6.7	19
80	Copper interconnections and antennas fabricated by hot-pressing printed copper formate. Flexible and Printed Electronics, 2017, 2, 035007.	2.7	5
81	Fully functional semi-transparent perovskite solar cell fabricated in ambient air. Sustainable Energy and Fuels, 2017, 1, 2120-2127.	4.9	27
82	Highly Selective Solar Thermal Sprayable Coating Based on Carbon Nanotubes. Solar Rrl, 2017, 1, 1700080.	5.8	10
83	Ti-Doped WO ₃ synthesized by a facile wet bath method for improved electrochromism. Journal of Materials Chemistry C, 2017, 5, 9995-10000.	5.5	43
84	Hydrothermal Synthesis of VO ₂ Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows. Small, 2017, 13, 1701147.	10.0	262
85	Continuous Nanoparticle Assembly by a Modulated Photo-Induced Microbubble for Fabrication of Micrometric Conductive Patterns. ACS Applied Materials & Interfaces, 2017, 9, 44214-44221.	8.0	57
86	Enhanced movement of CNT-based actuators by a three-Layered structure with controlled resistivity. Sensors and Actuators B: Chemical, 2017, 252, 1071-1077.	7.8	28
87	Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 272-280.	4.7	35
88	3D Printing of Shape Memory Polymers for Flexible Electronic Devices. Advanced Materials, 2016, 28, 4449-4454.	21.0	702
89	Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors. Advanced Energy Materials, 2016, 6, 1501882.	19.5	391

3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62

#	Article	IF	CITATIONS
91	Formation and performance of highly absorbing solar thermal coating based on carbon nanotubes and boehmite. Energy Conversion and Management, 2016, 120, 287-293.	9.2	36
92	Periodic micro-patterned VO ₂ thermochromic films by mesh printing. Journal of Materials Chemistry C, 2016, 4, 8385-8391.	5.5	68
93	Two-Dimensional SiO ₂ /VO ₂ Photonic Crystals with Statically Visible and Dynamically Infrared Modulated for Smart Window Deployment. ACS Applied Materials & Interfaces, 2016, 8, 33112-33120.	8.0	153
94	High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Science Advances, 2016, 2, e1501381.	10.3	191
95	4D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual and Physical Prototyping, 2016, 11, 263-270.	10.4	101
96	Nanodrawing of Aligned Single Carbon Nanotubes with a Nanopen. Nano Letters, 2016, 16, 1517-1522.	9.1	12
97	Inkjet-printed all solid-state electrochromic devices based on NiO/WO ₃ nanoparticle complementary electrodes. Nanoscale, 2016, 8, 348-357.	5.6	157
98	Fabrication of Carbon Nanotube/Indium Tin Oxide "Inverse Tandem―Absorbing Coatings with Tunable Spectral Selectivity for Solar–Thermal Applications. Energy Technology, 2015, 3, 1045-1050.	3.8	10
99	Selfâ€Assembly of Perovskite for Fabrication of Semitransparent Perovskite Solar Cells. Advanced Materials Interfaces, 2015, 2, 1500118.	3.7	61
100	Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature. Journal of Materials Chemistry C, 2015, 3, 6771-6777.	5.5	142
101	Wet deposition of carbon nanotube black coatings for stray light reduction in optical systems. Surface and Coatings Technology, 2015, 262, 21-25.	4.8	29
102	3D printing of porous structures by UV-curable O/W emulsion for fabrication of conductive objects. Journal of Materials Chemistry C, 2015, 3, 2040-2044.	5.5	87
103	Solution-based fabrication of VO ₂ (M) nanoparticles via lyophilisation. RSC Advances, 2015, 5, 25669-25675.	3.6	24
104	Printing a Selfâ€Reducing Copper Precursor on 2D and 3D Objects to Yield Copper Patterns with 50% Copper's Bulk Conductivity. Advanced Materials Interfaces, 2015, 2, 1400448.	3.7	25
105	Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics. Chemical Communications, 2015, 51, 1587-1590.	4.1	146
106	Formation of hydrophilic nanofibers from nanoemulsions through electrospinning. International Journal of Pharmaceutics, 2015, 478, 172-179.	5.2	42
107	Three-dimensional printing of scintillating materials. Review of Scientific Instruments, 2014, 85, 085102.	1.3	24
108	VO2/Si–Al gel nanocomposite thermochromic smart foils: Largely enhanced luminous transmittance and solar modulation. Journal of Colloid and Interface Science, 2014, 427, 49-53.	9.4	83

#	Article	IF	CITATIONS
109	Conductive Nanomaterials for Printed Electronics. Small, 2014, 10, 3515-3535.	10.0	707
110	Transparent conductors composed of nanomaterials. Nanoscale, 2014, 6, 5581-5591.	5.6	185
111	Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by "coffee ring effect― Nanoscale, 2014, 6, 11084-11089.	5.6	168
112	Nanoporous Thermochromic VO ₂ (M) Thin Films: Controlled Porosity, Largely Enhanced Luminous Transmittance and Solar Modulating Ability. Langmuir, 2014, 30, 1710-1715.	3.5	134
113	Active curcumin nanoparticles formed from a volatile microemulsion template. Journal of Materials Chemistry B, 2014, 2, 3745.	5.8	14
114	Controlling Adhesion Properties of SWCNT–PET Films Prepared by Wet Deposition. ACS Applied Materials & Interfaces, 2014, 6, 9265-9271.	8.0	19
115	Formation of VO2 zero-dimensional/nanoporous layers with large supercooling effects and enhanced thermochromic properties. RSC Advances, 2013, 3, 7124.	3.6	47
116	UV crosslinkable emulsions with silver nanoparticles for inkjet printing of conductive 3D structures. Journal of Materials Chemistry C, 2013, 1, 3244.	5.5	43
117	Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions. Journal of Materials Chemistry, 2012, 22, 14349.	6.7	70
118	Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes. Nanotechnology, 2012, 23, 344003.	2.6	60
119	Plasma and Microwave Flash Sintering of a Tailored Silver Nanoparticle Ink, Yielding 60% Bulk Conductivity on Costâ€Effective Polymer Foils. Advanced Materials, 2012, 24, 3993-3998.	21.0	123
120	Flexible transparent conductive coatings by combining self-assembly with sintering of silver nanoparticles performed at room temperature. Journal of Materials Chemistry, 2011, 21, 15378.	6.7	114
121	Conductive Inks with a "Built-In―Mechanism That Enables Sintering at Room Temperature. ACS Nano, 2011, 5, 3354-3359.	14.6	294
122	Formation of solid organic nanoparticles from a volatile catanionic microemulsion. Soft Matter, 2011, 7, 9359.	2.7	12
123	Photoluminescent silicon nanocrystals stabilized by ionic liquid. Journal of Nanoparticle Research, 2011, 13, 1971-1978.	1.9	13
124	The formation of carbon nanotube dispersions by high pressure homogenization and their rapid characterization by analytical centrifuge. Carbon, 2010, 48, 3346-3352.	10.3	52
125	Copper Nanoparticles for Printed Electronics: Routes Towards Achieving Oxidation Stability. Materials, 2010, 3, 4626-4638.	2.9	346
126	Triggering the Sintering of Silver Nanoparticles at Room Temperature. ACS Nano, 2010, 4, 1943-1948.	14.6	447

#	Article	IF	CITATIONS
127	Formation of air-stable copper–silver core–shell nanoparticles for inkjet printing. Journal of Materials Chemistry, 2009, 19, 3057.	6.7	298
128	Transparent Conductive Coatings by Printing Coffee Ring Arrays Obtained at Room Temperature. ACS Nano, 2009, 3, 3537-3542.	14.6	247
129	The Chemistry of Inkjet Inks. , 2009, , .		87
130	Ink-Jet Printing of Metallic Nanoparticles and Microemulsions. Macromolecular Rapid Communications, 2005, 26, 281-288.	3.9	202
131	Ring Stain Effect at Room Temperature in Silver Nanoparticles Yields High Electrical Conductivity. Langmuir, 2005, 21, 10264-10267.	3.5	75
132	Calorimetric methods applied to the investigation of divided systems in colloid science. Magyar Apróvad Közlemények, 2003, 71, 291-310.	1.4	8
133	Title is missing!. Magyar Apróvad Közlemények, 2003, 71, 263-272.	1.4	4
134	Silver Nanoparticles as Pigments for Water-Based Ink-Jet Inks. Chemistry of Materials, 2003, 15, 2208-2217.	6.7	245
135	Changes in Calorimetric Parameters and Solvent Accessibility of Hydrophobic Groups in Native and Chemically Modified Immunoglobulin G. Journal of Physical Chemistry B, 2000, 104, 4980-4985.	2.6	7
136	Formation of positively charged microcapsules based on chitosan-lecithin interactions. Journal of Microencapsulation, 1997, 14, 189-195.	2.8	43
137	Repellency of essential oils and their components to the human body louse, Pediculus humanus humanus. Entomologia Experimentalis Et Applicata, 1996, 78, 309-314.	1.4	55
138	Formation and Properties of Surface-Active Antibodies. ACS Symposium Series, 1995, , 533-540.	0.5	3
139	Microencapsulation of O/W emulsions by formation of a protein-surfactant insoluble complex. Journal of Microencapsulation, 1995, 12, 537-545.	2.8	21
140	The Effect of Drag-Reducing Additives on the Drop-Size Distribution Produced by a Turbulent Flow Field. Journal of Dispersion Science and Technology, 1991, 12, 17-23.	2.4	1
141	Surface activity of quaternary ammonium salts derived from jojoba oil. JAOCS, Journal of the American Oil Chemists' Society, 1990, 67, 605-606.	1.9	5
142	EMULSIFICATION BY CHEMICALLY MODIFIED OVALBUMIN. Journal of Dispersion Science and Technology, 1989, 10, 213-218.	2.4	10
143	EFFECTS OF SURFACE ACTIVE AGENTS ON PELLET FORMATION IN SUBMERGED FERMENTATIONS OF STREPTOMYCES TENDAE Journal of Dispersion Science and Technology, 1989, 10, 265-275.	2.4	14
144	A Novel Method for Rapid Non Destructive Determination of O/W Creams Stability. Drug Development and Industrial Pharmacy, 1982, 8, 475-485.	2.0	4

#	Article	IF	CITATIONS
145	Conduction heat transfer switching using magnetic Fe\$\$_{x}\$\$O\$\$_{y}\$\$-decorated carbon-based nanomaterials. European Physical Journal: Special Topics, 0, , 1.	2.6	1