Gregor Laaha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5647174/publications.pdf

Version: 2024-02-01

48 papers

2,694 citations

201674 27 h-index 214800 47 g-index

77 all docs

77
docs citations

77 times ranked 3028 citing authors

#	Article	IF	CITATIONS
1	Hydrological drought severity explained by climate and catchment characteristics. Journal of Hydrology, 2015, 526, 3-14.	5.4	391
2	The European 2015 drought from a climatological perspective. Hydrology and Earth System Sciences, 2017, 21, 1397-1419.	4.9	224
3	Exploring the link between meteorological drought and streamflow: Effects of climateâ€catchment interaction. Water Resources Research, 2014, 50, 2468-2487.	4.2	158
4	Hydrology needed to manage droughts: the 2015 European case. Hydrological Processes, 2016, 30, 3097-3104.	2.6	152
5	A comparison of low flow regionalisation methods—catchment grouping. Journal of Hydrology, 2006, 323, 193-214.	5.4	148
6	The EuropeanÂ2015 drought from a hydrological perspective. Hydrology and Earth System Sciences, 2017, 21, 3001-3024.	4.9	132
7	Seasonality indices for regionalizing low flows. Hydrological Processes, 2006, 20, 3851-3878.	2.6	109
8	Comparative assessment of predictions in ungauged basins – Part 2: Flood and low flow studies. Hydrology and Earth System Sciences, 2013, 17, 2637-2652.	4.9	95
9	Comparative assessment of predictions in ungauged basins – Part 3: Runoff signatures in Austria. Hydrology and Earth System Sciences, 2013, 17, 2263-2279.	4.9	93
10	A national low flow estimation procedure for Austria. Hydrological Sciences Journal, 2007, 52, 625-644.	2.6	65
11	Low flow estimates from short stream flow records—a comparison of methods. Journal of Hydrology, 2005, 306, 264-286.	5.4	63
12	Hydrological drought types in cold climates: quantitative analysis of causing factors and qualitative survey of impacts. Hydrology and Earth System Sciences, 2015, 19, 1993-2016.	4.9	62
13	Factors influencing long range dependence in streamflow of European rivers. Hydrological Processes, 2014, 28, 1573-1586.	2.6	61
14	Amphibian and reptile road-kills on tertiary roads in relation to landscape structure: using a citizen science approach with open-access land cover data. BMC Ecology, 2017, 17, 24.	3.0	57
15	A comparison of statistical learning methods for deriving determining factors of accident occurrence from an imbalanced high resolution dataset. Accident Analysis and Prevention, 2019, 127, 134-149.	5 . 7	56
16	Smooth regional estimation of low-flow indices: physiographical space based interpolation and top-kriging. Hydrology and Earth System Sciences, 2011, 15, 715-727.	4.9	54
17	Spatial prediction on river networks: comparison of top-kriging with regional regression. Hydrological Processes, 2014, 28, 315-324.	2.6	53
18	Relative importance of factors influencing the prevalence of lameness in Austrian cubicle loose-housed dairy cows. Preventive Veterinary Medicine, 2009, 92, 123-133.	1.9	48

#	Article	IF	Citations
19	Early noun plurals in German: regularity, productivity or default?. Journal of Child Language, 2006, 33, 271-302.	1.2	46
20	Implementation and Monitoring of Soil Bioengineering Measures at a Landslide in the Middle Mountains of Nepal. Plant and Soil, 2005, 278, 159-170.	3.7	43
21	rtop: An R package for interpolation of data with a variable spatial support, with an example from river networks. Computers and Geosciences, 2014, 67, 180-190.	4.2	43
22	Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS. Analytical and Bioanalytical Chemistry, 2013, 405, 2943-2955.	3.7	41
23	Trends in flow intermittence for European rivers. Hydrological Sciences Journal, 2021, 66, 37-49.	2.6	41
24	Magnitude and Occurrence Probability of Soil Loss: A Risk Analytical Approach for the Plot Scale For Two Sites in Lower Austria. Land Degradation and Development, 2016, 27, 43-51.	3.9	35
25	Uncertainty contributions to low-flow projections in Austria. Hydrology and Earth System Sciences, 2016, 20, 2085-2101.	4.9	34
26	Differentiation of metallicolous and nonâ€metallicolous <i>Salix caprea</i> populations based on phenotypic characteristics and nuclear microsatellite (SSR) markers. Plant, Cell and Environment, 2010, 33, 1641-1655.	5.7	32
27	Comparing Road-Kill Datasets from Hunters and Citizen Scientists in a Landscape Context. Remote Sensing, 2016, 8, 832.	4.0	30
28	Lessons from the 2018–2019 European droughts: a collective need for unifying drought risk management. Natural Hazards and Earth System Sciences, 2022, 22, 2201-2217.	3.6	28
29	Spatial Prediction of Stream Temperatures Using Top-Kriging with an External Drift. Environmental Modeling and Assessment, 2013, 18, 671-683.	2.2	23
30	The influence of riparian vegetation shading on water temperature during low flow conditions in a medium sized river. Knowledge and Management of Aquatic Ecosystems, 2017, , 5.	1.1	23
31	Fox sightings in a city are related to certain land use classes and sociodemographics: results from a citizen science project. BMC Ecology, 2018, 18, 50.	3.0	21
32	A three-pillar approach to assessing climate impacts on low flows. Hydrology and Earth System Sciences, 2016, 20, 3967-3985.	4.9	20
33	The challenges of hydrological drought definition, quantification and communication: an interdisciplinary perspective. Proceedings of the International Association of Hydrological Sciences, 0, 383, 291-295.	1.0	20
34	Prediction of low flows in ungauged basins. , 2013, , 163-188.		19
35	Validation of drought indices using environmental indicators: streamflow and carbon flux data. Agricultural and Forest Meteorology, 2019, 265, 218-226.	4.8	19
36	The coupled socio-ecohydrological evolution of river systems: Towards an integrative perspective of river systems in the 21st century. Science of the Total Environment, 2021, 801, 149619.	8.0	17

#	Article	lF	CITATIONS
37	Occurrence of the invasive Spanish slug in gardens: can a citizen science approach help deciphering underlying factors?. BMC Ecology, 2018, 18, 23.	3.0	16
38	Extreme weather exposure identification for road networks – a comparative assessment of statistical methods. Natural Hazards and Earth System Sciences, 2017, 17, 515-531.	3.6	15
39	Disentangling Drivers of Meteorological Droughts in the European Greater Alpine Region During the Last Two Centuries. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12404-12425.	3.3	11
40	Profitability and investment risk of Texan power system winterization. Nature Energy, 2022, 7, 409-416.	39.5	10
41	Regional low flow analysis in Sefidrood Drainage Basin, Iran using principal component regression. Hydrology Research, 2015, 46, 121-135.	2.7	9
42	Parameter-specific hydroclimatic sensitivity of a low-elevation network of living and historical tree-ring series from north-eastern Austria. Dendrochronologia, 2017, 45, 39-51.	2.2	8
43	Parsimonious statistical learning models for low-flow estimation. Hydrology and Earth System Sciences, 2022, 26, 129-148.	4.9	8
44	A 400-year reconstruction of spring–summer precipitation and summer low flow from regional tree-ring chronologies in North-Eastern Austria. Journal of Hydrology, 2019, 577, 123986.	5.4	4
45	Predicting spring migration of two European amphibian species with plant phenology using citizen science data. Scientific Reports, 2021, 11, 21611.	3.3	2
46	Key Factors for the Findability of Fish Passes in Large Epipotamal Rivers: The Case of the River Drava. Water (Switzerland), 2022, 14, 1530.	2.7	1
47	RIVER LOW FLOWS IN AUSTRIA. , 2006, , 313-322.		0
48	Winterizing power plants pays off for risk-neutral investors in Texas. Nature Energy, 2022, 7, 398-399.	39.5	0