List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5647167/publications.pdf Version: 2024-02-01

		19608	35952
235	12,619	61	97
papers	citations	h-index	g-index
227	227	227	12500
237	237	237	12599
all docs	docs citations	times ranked	citing authors

Ιμαν-Οινς Οιμ

#	Article	IF	CITATIONS
1	High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nature Communications, 2018, 9, 3485.	5.8	615
2	Controllable Deposition of Platinum Nanoparticles on Graphene As an Electrocatalyst for Direct Methanol Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 15639-15645.	1.5	391
3	Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nature Communications, 2020, 11, 436.	5.8	383
4	Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the "Abnormal― Aggregation-Induced Photoluminescence Enhancement. Analytical Chemistry, 2014, 86, 4423-4430.	3.2	334
5	Regenerable Covalent Organic Frameworks for Photoâ€enhanced Uranium Adsorption from Seawater. Angewandte Chemie - International Edition, 2020, 59, 17684-17690.	7.2	240
6	Synthesis, Characterization, and Immobilization of Prussian Blue-Modified Au Nanoparticles:Â Application to Electrocatalytic Reduction of H2O2. Langmuir, 2007, 23, 2133-2137.	1.6	216
7	The Synergistic Effect of Prussian-Blue-Grafted Carbon Nanotube/Poly(4-vinylpyridine) Composites for Amperometric Sensing. Advanced Functional Materials, 2007, 17, 1574-1580.	7.8	202
8	Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Analytical Biochemistry, 2009, 385, 264-269.	1.1	181
9	Surface Plasmon Resonance Sensor Based on Magnetic Molecularly Imprinted Polymers Amplification for Pesticide Recognition. Analytical Chemistry, 2013, 85, 11944-11951.	3.2	167
10	Using Graphene Quantum Dots as Photoluminescent Probes for Protein Kinase Sensing. Analytical Chemistry, 2013, 85, 9148-9155.	3.2	166
11	Graphene Quantum Dots Combined with Europium Ions as Photoluminescent Probes for Phosphate Sensing. Chemistry - A European Journal, 2013, 19, 3822-3826.	1.7	159
12	Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: An approach from discrete wavelet transform. Analytical Biochemistry, 2009, 390, 68-73.	1.1	150
13	Lanthanide Coordination Polymer Nanoparticles as an Excellent Artificial Peroxidase for Hydrogen Peroxide Detection. Analytical Chemistry, 2016, 88, 6342-6348.	3.2	148
14	Stable sp carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater. Journal of Hazardous Materials, 2020, 392, 122333.	6.5	136
15	Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein. Analytica Chimica Acta, 2012, 737, 22-28.	2.6	129
16	Nanocomposite film based on graphene oxide for high performance flexible glucose biosensor. Sensors and Actuators B: Chemical, 2011, 160, 287-294.	4.0	125
17	Using the Concept of Chous Pseudo Amino Acid Composition to Predict Enzyme Family Classes: An Approach with Support Vector Machine Based on Discrete Wavelet Transform. Protein and Peptide Letters, 2010, 17, 715-722.	0.4	124
18	Controllable Deposition of a Platinum Nanoparticle Ensemble on a Polyaniline/Graphene Hybrid as a Novel Electrode Material for Electrochemical Sensing. Chemistry - A European Journal, 2012, 18, 7950-7959.	1.7	124

#	Article	IF	CITATIONS
19	A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix. Biosensors and Bioelectronics, 2009, 25, 852-857.	5.3	121
20	Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application. Biosensors and Bioelectronics, 2009, 24, 2649-2653.	5.3	110
21	A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase. Journal of Chromatography A, 2012, 1266, 95-102.	1.8	110
22	Fluorescent graphene quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution. Chemical Communications, 2013, 49, 5180.	2.2	109
23	Regenerable Carbohydrazide-Linked Fluorescent Covalent Organic Frameworks for Ultrasensitive Detection and Removal of Mercury. ACS Sustainable Chemistry and Engineering, 2020, 8, 445-451.	3.2	108
24	Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A. Biosensors and Bioelectronics, 2013, 50, 305-310.	5.3	107
25	Ferrocene-modified Fe3O4@SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors. Electrochemistry Communications, 2007, 9, 2734-2738.	2.3	103
26	Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites. Bioinformatics, 2013, 29, 1614-1622.	1.8	102
27	Covalent Organic Framework Nanosheet-Based Ultrasensitive and Selective Colorimetric Sensor for Trace Hg ²⁺ Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 9408-9415.	3.2	102
28	Graphene-based optical nanosensors for detection of heavy metal ions. TrAC - Trends in Analytical Chemistry, 2018, 102, 280-289.	5.8	101
29	Facile preparation of magnetic core–shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosensors and Bioelectronics, 2010, 25, 1447-1453.	5.3	98
30	Colorimetric Assay Conversion to Highly Sensitive Electrochemical Assay for Bimodal Detection of Arsenate Based on Cobalt Oxyhydroxide Nanozyme via Arsenate Absorption. Analytical Chemistry, 2019, 91, 6487-6497.	3.2	98
31	Facile preparation of novel core–shell enzyme–Au–polydopamine–Fe3O4 magnetic bionanoparticles for glucosesensor. Biosensors and Bioelectronics, 2013, 42, 293-299.	5.3	94
32	Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor. Analytical and Bioanalytical Chemistry, 2005, 383, 918-922.	1.9	91
33	A dual-potential electrochemiluminescence ratiometric approach based on graphene quantum dots and luminol for highly sensitive detection of protein kinase activity. Chemical Communications, 2015, 51, 12669-12672.	2.2	89
34	Facile and Green Approach to the Synthesis of Boron Nitride Quantum Dots for 2,4,6-Trinitrophenol Sensing. ACS Applied Materials & Interfaces, 2018, 10, 7315-7323.	4.0	88
35	A general design approach toward covalent organic frameworks for highly efficient electrochemiluminescence. Nature Communications, 2021, 12, 4735.	5.8	88
36	Facile synthesis of Fe3O4@Al2O3 core–shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry. Biosensors and Bioelectronics, 2011, 26, 3005-3011.	5.3	87

#	Article	IF	CITATIONS
37	Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions. Analytica Chimica Acta, 2015, 895, 95-103.	2.6	86
38	Electrochemically deposited nanocomposite film of CS-Fc/Au NPs/GOx for glucose biosensor application. Biosensors and Bioelectronics, 2009, 24, 2920-2925.	5.3	85
39	Facile preparation of protein stationary phase based on polydopamine/graphene oxide platform for chip-based open tubular capillary electrochromatography enantioseparation. Journal of Chromatography A, 2014, 1323, 135-142.	1.8	85
40	Simultaneously electrochemical detection of microRNAs based on multifunctional magnetic nanoparticles probe coupling with hybridization chain reaction. Biosensors and Bioelectronics, 2017, 97, 325-331.	5.3	85
41	ldentifying protein quaternary structural attributes by incorporating physicochemical properties into the general form of Chou's PseAAC via discrete wavelet transform. Molecular BioSystems, 2012, 8, 3178.	2.9	83
42	Environment-friendly facile synthesis of Pt nanoparticles supported on polydopamine modified carbon materials. Journal of Materials Chemistry A, 2013, 1, 3945.	5.2	83
43	Controllable deposition of platinum nanoparticles on polyaniline-functionalized carbon nanotubes. Journal of Materials Chemistry, 2012, 22, 17196.	6.7	82
44	Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly efficient photocatalytic activity. Journal of Colloid and Interface Science, 2018, 514, 664-674.	5.0	82
45	PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features. Molecular BioSystems, 2012, 8, 1520.	2.9	81
46	A novel amperometric immunosensor based on three-dimensional sol–gel network and nanoparticle self-assemble technique. Analytica Chimica Acta, 2005, 534, 223-229.	2.6	79
47	One-pot synthesis of GO/AgNPs/luminol composites with electrochemiluminescence activity for sensitive detection of DNA methyltransferase activity. Biosensors and Bioelectronics, 2015, 63, 458-464.	5.3	78
48	Covalent Organic Framework Nanosheets for Fluorescence Sensing via Metal Coordination. ACS Applied Nano Materials, 2019, 2, 5342-5349.	2.4	78
49	Low Band Gap Benzoxazoleâ€Linked Covalent Organic Frameworks for Photoâ€Enhanced Targeted Uranium Recovery. Small, 2021, 17, e2006882.	5.2	78
50	Rational design of covalent organic frameworks as a groundbreaking uranium capture platform through three synergistic mechanisms. Applied Catalysis B: Environmental, 2021, 294, 120250.	10.8	77
51	One-step, stabilizer-free and green synthesis of Cu nanoclusters as fluorescent probes for sensitive and selective detection of nitrite ions. Sensors and Actuators B: Chemical, 2016, 230, 314-319.	4.0	76
52	PMeS: Prediction of Methylation Sites Based on Enhanced Feature Encoding Scheme. PLoS ONE, 2012, 7, e38772.	1.1	74
53	Efficient DNA-Catalyzed Porphyrin Metalation for Fluorescent Ratiometric Pb ²⁺ Detection. Analytical Chemistry, 2019, 91, 11403-11408.	3.2	74
54	Green synthesis of peptide-templated gold nanoclusters as novel fluorescence probes for detecting protein kinase activity. Chemical Communications, 2015, 51, 10006-10009.	2.2	72

#	Article	IF	CITATIONS
55	Label-free fluorescence assay for protein kinase based on peptide biomineralized gold nanoclusters as signal sensing probe. Biosensors and Bioelectronics, 2015, 64, 234-240.	5.3	69
56	Facile Construction of Covalent Organic Framework Nanozyme for Colorimetric Detection of Uranium. Small, 2021, 17, e2102944.	5.2	69
57	One-Pot Synthesis of Boron Carbon Nitride Nanosheets for Facile and Efficient Heavy Metal Ions Removal. ACS Sustainable Chemistry and Engineering, 2018, 6, 11685-11694.	3.2	68
58	Difunctional covalent organic framework hybrid material for synergistic adsorption and selective removal of fluoroquinolone antibiotics. Journal of Hazardous Materials, 2021, 413, 125302.	6.5	68
59	Target-Triggering Multiple-Cycle Amplification Strategy for Ultrasensitive Detection of Adenosine Based on Surface Plasma Resonance Techniques. Analytical Chemistry, 2015, 87, 929-936.	3.2	67
60	Ratiometric Detection of Cu ²⁺ Using a Luminol-Tb-GMP Nanoprobe with High Sensitivity and Selectivity. ACS Sustainable Chemistry and Engineering, 2018, 6, 9333-9341.	3.2	65
61	Nanoceria-Templated Metal Organic Frameworks with Oxidase-Mimicking Activity Boosted by Hexavalent Chromium. Analytical Chemistry, 2020, 92, 2339-2346.	3.2	65
62	Position-Specific Analysis and Prediction for Protein Lysine Acetylation Based on Multiple Features. PLoS ONE, 2012, 7, e49108.	1.1	64
63	Aggregation-induced emission of luminol: a novel strategy for fluorescence ratiometric detection of ALP and As(<scp>v</scp>) with high sensitivity and selectivity. Chemical Communications, 2018, 54, 7487-7490.	2.2	63
64	A conveniently synthesized redox-active fluorescent covalent organic framework for selective detection and adsorption of uranium. Journal of Hazardous Materials, 2022, 425, 127951.	6.5	63
65	DNA-templated Ag nanoclusters as fluorescent probes for sensing and intracellular imaging of hydroxyl radicals. Talanta, 2014, 118, 339-347.	2.9	62
66	Accurate <i>in silico</i> prediction of species-specific methylation sites based on information gain feature optimization. Bioinformatics, 2016, 32, 3107-3115.	1.8	62
67	Vinylene-linked covalent organic frameworks with enhanced uranium adsorption through three synergistic mechanisms. Chemical Engineering Journal, 2021, 419, 129550.	6.6	62
68	One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation. Journal of Chromatography A, 2014, 1362, 301-308.	1.8	59
69	A luminescent lanthanide coordination polymer based on energy transfer from metal to metal for hydrogen peroxide detection. Biosensors and Bioelectronics, 2017, 89, 721-727.	5.3	59
70	Ratiometric electrochemical assay for sensitive detecting microRNA based on dual-amplification mechanism of duplex-specific nuclease and hybridization chain reaction. Biosensors and Bioelectronics, 2018, 102, 211-216.	5.3	59
71	SuccFind: a novel succinylation sites online prediction tool via enhanced characteristic strategy. Bioinformatics, 2015, 31, 3748-3750.	1.8	58
72	Label-free colorimetric detection of biothiols utilizing SAM and unmodified Au nanoparticles. Biosensors and Bioelectronics, 2015, 68, 668-674.	5.3	57

#	Article	IF	CITATIONS
73	A norepinephrine coated magnetic molecularly imprinted polymer for simultaneous multiple chiral recognition. Journal of Chromatography A, 2015, 1409, 268-276.	1.8	57
74	Electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of graphene and Fe3O4/Au NPs. Journal of Electroanalytical Chemistry, 2016, 761, 112-117.	1.9	57
75	Electrochemical sensor for arsenite detection using graphene oxide assisted generation of prussian blue nanoparticles as enhanced signal label. Analytica Chimica Acta, 2018, 1002, 82-89.	2.6	57
76	High-Efficiency Photoenhanced Extraction of Uranium from Natural Seawater by Olefin-Linked Covalent Organic Frameworks. ACS ES&T Water, 2021, 1, 440-448.	2.3	57
77	A label-free amperometric immunosensor for alpha-fetoprotein determination based on highly ordered porous multi-walled carbon nanotubes/silica nanoparticles array platform. Sensors and Actuators B: Chemical, 2012, 166-167, 569-575.	4.0	56
78	Multiplexed Electrochemical Detection of Trypsin and Chymotrypsin Based on Distinguishable Signal Nanoprobes. Analytical Chemistry, 2014, 86, 9256-9263.	3.2	56
79	Computational prediction of species-specific malonylation sites via enhanced characteristic strategy. Bioinformatics, 2017, 33, 1457-1463.	1.8	56
80	Covalent organic frameworks constructed by flexible alkyl amines for efficient gold recovery from leaching solution of e-waste. Chemical Engineering Journal, 2021, 426, 131865.	6.6	56
81	PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis, 2011, 32, 3331-3340.	1.3	55
82	Graphene Quantum Dots Assembled with Metalloporphyrins for "Turn on―Sensing of Hydrogen Peroxide and Glucose. Chemistry - A European Journal, 2015, 21, 9343-9348.	1.7	54
83	Rapid Detection of Mercury lons Based on Nitrogen-Doped Graphene Quantum Dots Accelerating Formation of Manganese Porphyrin. ACS Sensors, 2018, 3, 1040-1047.	4.0	54
84	OligoPred: A web-server for predicting homo-oligomeric proteins by incorporating discrete wavelet transform into Chou's pseudo amino acid composition. Journal of Molecular Graphics and Modelling, 2011, 30, 129-134.	1.3	52
85	A versatile polydopamine platform for facile preparation of protein stationary phase for chip-based open tubular capillary electrochromatography enantioseparation. Journal of Chromatography A, 2013, 1294, 145-151.	1.8	52
86	Nitrogen-Doped Graphene Quantum Dots as a New Catalyst Accelerating the Coordination Reaction between Cadmium(II) and 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin for Cadmium(II) Sensing. Analytical Chemistry, 2015, 87, 10894-10901.	3.2	52
87	Ferrocene-modified multiwalled carbon nanotubes as building block for construction of reagentless enzyme-based biosensors. Sensors and Actuators B: Chemical, 2008, 135, 181-187.	4.0	49
88	Sonochemical synthesis of magnetic core–shell Fe3O4@ZrO2 nanoparticles and their application to the highly effective immobilization of myoglobin for direct electrochemistry. Electrochimica Acta, 2011, 56, 4231-4236.	2.6	49
89	Direct fluorescence detection of microRNA based on enzymatically engineered primer extension poly-thymine (EPEPT) reaction using copper nanoparticles as nano-dye. Biosensors and Bioelectronics, 2017, 87, 216-221.	5.3	49
90	Covalent Organic Framework Sponges for Efficient Solar Desalination and Selective Uranium Recovery. ACS Applied Materials & Amp; Interfaces, 2021, 13, 31561-31568.	4.0	49

#	Article	IF	CITATIONS
91	"On-off―switchable electrochemical affinity nanobiosensor based on graphene oxide for ultrasensitive glucose sensing. Biosensors and Bioelectronics, 2013, 41, 430-435.	5.3	48
92	Alkynyl-Based sp ² Carbon-Conjugated Covalent Organic Frameworks with Enhanced Uranium Extraction from Seawater by Photoinduced Multiple Effects. CCS Chemistry, 2021, 3, 168-179.	4.6	48
93	Colorimetric detection of methyltransferase activity based on the enhancement of CoOOH nanozyme activity by ssDNA. Sensors and Actuators B: Chemical, 2019, 281, 1073-1079.	4.0	47
94	Simultaneous sensitive detection and rapid adsorption of UO ₂ ²⁺ based on a post-modified sp ² carbon-conjugated covalent organic framework. Environmental Science: Nano, 2020, 7, 842-850.	2.2	47
95	An ultratrace assay of arsenite based on the synergistic quenching effect of Ru(bpy) ₃ ²⁺ and arsenite on the electrochemiluminescence of Au–g-C ₃ N ₄ nanosheets. Chemical Communications, 2018, 54, 14001-14004.	2.2	46
96	Covalent organic framework hydrogels for synergistic seawater desalination and uranium extraction. Journal of Materials Chemistry A, 2021, 9, 25611-25620.	5.2	46
97	Fabrication, characterization, and application of potentiometric immunosensor based on biocompatible and controllable three-dimensional porous chitosan membranes. Journal of Colloid and Interface Science, 2008, 320, 125-131.	5.0	45
98	Using support vector machines for prediction of protein structural classes based on discrete wavelet transform. Journal of Computational Chemistry, 2009, 30, 1344-1350.	1.5	43
99	Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on ceria nanoparticles coated with multiwalled carbon nanotubesby a hydrothermal synthetic method. Mikrochimica Acta, 2010, 171, 333-339.	2.5	43
100	A novel nanosensor composed of aptamer bio-dots and gold nanoparticles for determination of thrombin with multiple signals. Biosensors and Bioelectronics, 2016, 85, 798-806.	5.3	43
101	B ₄ C nanosheets decorated with <i>in situ</i> -derived boron-doped graphene quantum dots for high-efficiency ambient N ₂ fixation. Chemical Communications, 2019, 55, 7406-7409.	2.2	43
102	Synthesis of imidazolium-based cationic organic polymer for highly efficient and selective removal of ReO4â^'/TcO4â^'. Chemical Engineering Journal, 2021, 419, 129546.	6.6	43
103	Construction of Two-Dimensional Fluorescent Covalent Organic Framework Nanosheets for the Detection and Removal of Nitrophenols. Analytical Chemistry, 2022, 94, 2517-2526.	3.2	43
104	Identify submitochondria and subchloroplast locations with pseudo amino acid composition: Approach from the strategy of discrete wavelet transform feature extraction. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 424-430.	1.9	42
105	Bio-inspired hydroxylation imidazole linked covalent organic polymers for uranium extraction from aqueous phases. Chemical Engineering Journal, 2021, 420, 129658.	6.6	42
106	Preparation of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for oxygen reduction and methanol oxidation. Journal of Electroanalytical Chemistry, 2014, 728, 41-50.	1.9	41
107	Simultaneous Determination of Concanavalin A and Peanut Agglutinin by Dual-Color Quantum Dots. Analytical Chemistry, 2013, 85, 10969-10976.	3.2	40
108	Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing. Analytica Chimica Acta, 2016, 904, 58-64.	2.6	40

#	Article	IF	CITATIONS
109	Biocompatible and label-free amperometric immunosensor for hepatitis B surface antigen using a sensing film composed of poly(allylamine)-branched ferrocene and gold nanoparticles. Mikrochimica Acta, 2011, 174, 97-105.	2.5	39
110	PredSulSite: Prediction of protein tyrosine sulfation sites with multiple features and analysis. Analytical Biochemistry, 2012, 428, 16-23.	1.1	39
111	Regenerable Covalent Organic Frameworks for Photoâ€enhanced Uranium Adsorption from Seawater. Angewandte Chemie, 2020, 132, 17837-17843.	1.6	39
112	Enantiomeric separation by open-tubular capillary electrochromatography using bovine-serum-albumin-conjugated graphene oxide–magnetic nanocomposites as stationary phase. Microfluidics and Nanofluidics, 2014, 16, 195-206.	1.0	38
113	Simultaneous Determination of Protein Kinase A and Casein Kinase II by Dual-Color Peptide Biomineralized Metal Nanoclusters. Analytical Chemistry, 2016, 88, 11460-11467.	3.2	38
114	Labelâ€Free Colorimetric Detection of Arsenite Utilizing Gâ€∮Tâ€Rich Oligonucleotides and Unmodified Au Nanoparticles. Chemistry - A European Journal, 2013, 19, 5029-5033.	1.7	37
115	Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography. Electrophoresis, 2018, 39, 356-362.	1.3	37
116	Separation and Simultaneous Determination of Uric Acid and Ascorbic Acid on a Dynamically Modified Poly(dimethylsiloxane) Microchip. Analytical Sciences, 2007, 23, 1409-1414.	0.8	36
117	Simple and highly selective detection of arsenite based on the assembly-induced fluorescence enhancement of DNA quantum dots. Biosensors and Bioelectronics, 2017, 94, 701-706.	5.3	36
118	Mo-Doped FeP Nanospheres for Artificial Nitrogen Fixation. ACS Applied Materials & Interfaces, 2020, 12, 17452-17458.	4.0	36
119	A Nanocomposite Chitosan Based on Ferroceneâ€Modified Silica Nanoparticles and Carbon Nanotubes for Biosensor Application. Electroanalysis, 2007, 19, 2335-2341.	1.5	35
120	Microchip CE analysis of amino acids on a titanium dioxide nanoparticlesâ€coated PDMS microfluidic device with inâ€channel indirect amperometric detection. Electrophoresis, 2009, 30, 3472-3479.	1.3	35
121	Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine. Amino Acids, 2010, 38, 1201-1208.	1.2	34
122	Construction of graphene oxide magnetic nanocomposites-based on-chip enzymatic microreactor for ultrasensitive pesticide detection. Journal of Chromatography A, 2013, 1315, 28-35.	1.8	33
123	Label-free colorimetric assay for DNA methylation based on unmodified Au nanorods as a signal sensing probe coupled with enzyme-linkage reactions. Chemical Communications, 2013, 49, 3546.	2.2	33
124	The colorimetric assay of DNA methyltransferase activity based on strand displacement amplification. Sensors and Actuators B: Chemical, 2017, 238, 626-632.	4.0	33
125	Easy Design of Colorimetric Logic Gates Based on Nonnatural Base Pairing and Controlled Assembly of Gold Nanoparticles. Langmuir, 2013, 29, 8929-8935.	1.6	32
126	Optical sensors for inorganic arsenic detection. TrAC - Trends in Analytical Chemistry, 2019, 118, 869-879.	5.8	32

#	Article	IF	CITATIONS
127	Construction of D–A-Conjugated Covalent Organic Frameworks with Enhanced Photodynamic, Photothermal, and Nanozymatic Activities for Efficient Bacterial Inhibition. ACS Applied Materials & Interfaces, 2022, 14, 28289-28300.	4.0	32
128	Direct electrochemistry and electrocatalysis of myoglobin immobilized on zirconia/multi-walled carbon nanotube nanocomposite. Materials Research Bulletin, 2010, 45, 1855-1860.	2.7	31
129	The prediction of palmitoylation site locations using a multiple feature extraction method. Journal of Molecular Graphics and Modelling, 2013, 40, 125-130.	1.3	31
130	Multimodal Assay of Arsenite Contamination in Environmental Samples with Improved Sensitivity through Stimuli-Response of Multiligands Modified Silver Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 6223-6232.	3.2	31
131	Preparation of porous chitosan/carbon nanotubes film modified electrode for biosensor application. Mikrochimica Acta, 2008, 162, 57-64.	2.5	30
132	Colorimetric Logic Gates Based on Ion-Dependent DNAzymes. Journal of Physical Chemistry C, 2013, 117, 12352-12357.	1.5	30
133	Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles. Analytica Chimica Acta, 2015, 871, 28-34.	2.6	30
134	A Br ^{â^'} anion adsorbed porous Ag nanowire film: <i>in situ</i> electrochemical preparation and application toward efficient CO ₂ electroreduction to CO with high selectivity. Inorganic Chemistry Frontiers, 2018, 5, 2238-2241.	3.0	30
135	Surface modification of poly(dimethylsiloxane) microfluidic devices and its application in simultaneous analysis of uric acid and ascorbic acid in human urine. Journal of Separation Science, 2008, 31, 2860-2867.	1.3	29
136	Bi-functional natural polymers for highly efficient adsorption and reduction of gold. Chemical Engineering Journal, 2021, 422, 130577.	6.6	29
137	Covalent Organic Frameworks as Advanced Uranyl Electrochemiluminescence Monitoring Platforms. Analytical Chemistry, 2021, 93, 16149-16157.	3.2	29
138	Preparation of GOD/Solâ€Gel Silica Film on Prussian Blue Modified Electrode for Glucose Biosensor Application. Electroanalysis, 2008, 20, 2642-2648.	1.5	28
139	DNA Colorimetric Logic Gates Based on Triplex–Helix Molecular Switch. Journal of Physical Chemistry C, 2014, 118, 14410-14417.	1.5	28
140	Preparation of Three-Dimensional Ordered Macroporous Prussian Blue Film Electrode for Glucose Biosensor Application. Electroanalysis, 2007, 19, 1201-1206.	1.5	27
141	One‣tep Electrochemically Deposited Nanocomposite Film of CSâ€Fc/MWNTs/GOD for Glucose Biosensor Application. Electroanalysis, 2009, 21, 1685-1691.	1.5	27
142	DNA Electronic Logic Gates Based on Metalâ€ionâ€Dependent Induction of Oligonucleotide Structural Motifs. Chemistry - A European Journal, 2013, 19, 6961-6965.	1.7	27
143	PSEA: Kinase-specific prediction and analysis of human phosphorylation substrates. Scientific Reports, 2014, 4, 4524.	1.6	27
144	Preparation of novel fluorescent DNA bio-dots and their application for biothiols and glutathione reductase activity detection. Biosensors and Bioelectronics, 2015, 74, 886-894.	5.3	27

#	Article	lF	CITATIONS
145	Cold nanoclusters-based dual-emission ratiometric fluorescence probe for monitoring protein kinase. Sensors and Actuators B: Chemical, 2016, 226, 144-150.	4.0	26
146	Fluorometric determination of the activity of alkaline phosphatase based on the competitive binding of gold nanoparticles and pyrophosphate to CePO4:Tb nanorods. Mikrochimica Acta, 2018, 185, 288.	2.5	26
147	Charge-Enhanced Separation of Organic Pollutants in Water by Anionic Covalent Organic Frameworks. ACS Omega, 2020, 5, 32002-32010.	1.6	26
148	Gold nanoparticles decorated carbon nitride nanosheets as a coreactant regulate the conversion of the dual-potential electrochemiluminescence of Ru(bpy) ₃ ²⁺ for Hg ²⁺ detection. Chemical Communications, 2020, 56, 5625-5628.	2.2	26
149	Zwitterionic surface charge regulation in ionic covalent organic nanosheets: Synergistic adsorption of fluoroquinolone antibiotics. Chemical Engineering Journal, 2021, 417, 128034.	6.6	26
150	Enantiomeric separation by microchip electrophoresis using bovine serum albumin conjugated magnetic coreâ€shell Fe ₃ O ₄ @Au nanocomposites as stationary phase. Electrophoresis, 2014, 35, 2824-2832.	1.3	25
151	Highly sensitive voltammetric determination of arsenite by exploiting arsenite-induced conformational change of ssDNA and the electrochemical indicator Methylene Blue. Mikrochimica Acta, 2017, 184, 4047-4054.	2.5	25
152	Prediction of protein secondary structure based on continuous wavelet transform. Talanta, 2003, 61, 285-293.	2.9	24
153	Prediction of the Types of Membrane Proteins Based on Discrete Wavelet Transform and Support Vector Machines. Protein Journal, 2010, 29, 114-119.	0.7	24
154	A method to distinguish between lysine acetylation and lysine methylation from protein sequences. Journal of Theoretical Biology, 2012, 310, 223-230.	0.8	24
155	Systematic Analysis and Prediction of Pupylation Sites in Prokaryotic Proteins. PLoS ONE, 2013, 8, e74002.	1.1	24
156	Using support vector machines to identify protein phosphorylation sites in viruses. Journal of Molecular Graphics and Modelling, 2015, 56, 84-90.	1.3	24
157	Facile surface modification of mesoporous silica with heterocyclic silanes for efficiently removing arsenic. Chinese Chemical Letters, 2019, 30, 1133-1136.	4.8	24
158	Regenerable, anti-biofouling covalent organic frameworks for monitoring and extraction of uranium from seawater. Environmental Chemistry Letters, 2021, 19, 1847-1856.	8.3	24
159	rGO-based covalent organic framework hydrogel for synergistically enhance uranium capture capacity through photothermal desalination. Chemical Engineering Journal, 2022, 428, 131178.	6.6	24
160	Arousing Electrochemiluminescence Out of Non-Electroluminescent Monomers within Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 47921-47931.	4.0	24
161	General preparation of novel core–shell heme protein–Au–polydopamine–Fe3O4 magnetic bionanoparticles for direct electrochemistry. Journal of Electroanalytical Chemistry, 2013, 700, 70-76. 	1.9	23
162	Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using a multifunctional nanoprobe. Analytica Chimica Acta, 2014, 812, 33-40.	2.6	23

#	Article	IF	CITATIONS
163	Band Gap Engineering in Vinylene-Linked Covalent Organic Frameworks for Enhanced Photocatalytic Degradation of Organic Contaminants and Disinfection of Bacteria. ACS Applied Bio Materials, 2021, 4, 6502-6511.	2.3	23
164	Exonuclease III-assisted recycling amplification detection of hepatitis B virus DNA by DNA-scaffolded silver nanoclusters probe. Sensors and Actuators B: Chemical, 2014, 205, 219-226.	4.0	22
165	Gold nanoclusters enhanced electrochemiluminescence of g-C3N4 for protein kinase activity analysis and inhibition. Journal of Electroanalytical Chemistry, 2020, 856, 113706.	1.9	22
166	Construction of sp ² Carbon-Conjugated Covalent Organic Frameworks for Framework-Induced Electrochemiluminescence. ACS Applied Electronic Materials, 2021, 3, 4490-4497.	2.0	22
167	Regenerable and stable biomimetic hydroxyl-modified metal-organic frameworks for targeted uranium capture. Chemical Engineering Journal, 2022, 433, 133787.	6.6	22
168	lonic liquid modified covalent organic frameworks for efficient detection and adsorption of ReO4–/TcO4–. Journal of Environmental Chemical Engineering, 2022, 10, 107666.	3.3	22
169	A Graphene Quantum Dots–Hypochlorite Hybrid System for the Quantitative Fluorescent Determination of Total Antioxidant Capacity. Small, 2017, 13, 1700709.	5.2	21
170	Aggregation-induced fluorescence of the luminol-terbium(III) complex in polymer nanoparticles for sensitive determination of thrombin. Mikrochimica Acta, 2020, 187, 53.	2.5	21
171	A novel algorithm combining support vector machine with the discrete wavelet transform for the prediction of protein subcellular localization. Computers in Biology and Medicine, 2012, 42, 180-187.	3.9	20
172	PredHydroxy: computational prediction of protein hydroxylation site locations based on the primary structure. Molecular BioSystems, 2015, 11, 819-825.	2.9	20
173	Electronic synergy between ligands of luminol and isophthalic acid for fluorescence ratiometric detection of Hg2+. Analytica Chimica Acta, 2020, 1128, 11-18.	2.6	20
174	Lanthanide Phosphate Nanoparticle-Based One-Step Optical Discrimination of Alkaline Phosphatase Activity. ACS Applied Nano Materials, 2020, 3, 2336-2345.	2.4	20
175	Direct electrochemistry of myoglobin immobilized in NiO/MWNTs hybrid nanocomposite for electrocatalytic detection of hydrogen peroxide. Journal of Applied Electrochemistry, 2010, 40, 1651-1657.	1.5	19
176	Metalâ€Ionâ€Triggered Exonucleaseâ€III Activity for the Construction of DNA Colorimetric Logic Gates. Chemistry - A European Journal, 2015, 21, 15272-15279.	1.7	19
177	Proteomic analysis and prediction of human phosphorylation sites in subcellular level reveal subcellular specificity. Bioinformatics, 2015, 31, 194-200.	1.8	19
178	Oneâ€step preparation and application of musselâ€inspired poly(norepinephrine)â€coated polydimethylsiloxane microchip for separation of chiral compounds. Electrophoresis, 2016, 37, 1676-1684.	1.3	19
179	Target induced aggregation of Ce(III)-based coordination polymer nanoparticles for fluorimetric detection of As(III). Talanta, 2018, 190, 255-262.	2.9	19
180	Colorimetric and electrochemical arsenate assays by exploiting the peroxidase-like activity of FeOOH nanorods. Mikrochimica Acta, 2019, 186, 732.	2.5	19

#	Article	IF	CITATIONS
181	Using support vector machines to distinguish enzymes: Approached by incorporating wavelet transform. Journal of Theoretical Biology, 2009, 256, 625-631.	0.8	18
182	Proteome-wide Analysis of Amino Acid Variations That Influence Protein Lysine Acetylation. Journal of Proteome Research, 2013, 12, 949-958.	1.8	17
183	Rational designed molecularly imprinted triazine-based porous aromatic frameworks for enhanced palladium capture via three synergistic mechanisms. Chemical Engineering Journal, 2022, 430, 132962.	6.6	17
184	Prediction of Transmembrane Proteins Based on the Continuous Wavelet Transform. Journal of Chemical Information and Computer Sciences, 2004, 44, 741-747.	2.8	16
185	Bio-dots assembly-induced aggregation of gold nanoparticles for highly sensitive and selective colorimetric detection of methionine. Sensors and Actuators B: Chemical, 2017, 244, 1031-1036.	4.0	16
186	CdSe/ZnS quantum dots coated with carboxy-PEG and modified with the terbium(III) complex of guanosine 5â€2-monophosphate as a fluorescent nanoprobe for ratiometric determination of arsenate via its inhibition of acid phosphatase activity. Mikrochimica Acta, 2019, 186, 45.	2.5	16
187	Synthesis and Characterization of MWNTs/Au NPs/HS(CH ₂) ₆ Fc Nanocomposite: Application to Electrochemical Determination of Ascorbic Acid. Electroanalysis, 2008, 20, 1819-1824.	1.5	15
188	Predicting homo-oligomers and hetero-oligomers by pseudo-amino acid composition: An approach from discrete wavelet transformation. Biochimie, 2011, 93, 1132-1138.	1.3	15
189	Enhanced electrophoresis separation of non-electroactive amino acids on poly(dimethylsiloxane) microchip coupled with direct electrochemical detection on a copper electrode. Microfluidics and Nanofluidics, 2011, 11, 227-233.	1.0	15
190	Preparation of polynorepinephrine adhesive coating via one-step self-polymerization for enantioselective capillary electrochromatography coupled with electrogenerated chemiluminesense detection. Journal of Chromatography A, 2013, 1284, 194-201.	1.8	15
191	A facile graphene oxide-based fluorescent nanosensor for the <i>in situ</i> "turn-on―detection of telomerase activity. Analyst, The, 2018, 143, 2334-2341.	1.7	14
192	Electrochemical assay for As (III) by combination of highly thiol-rich trithiocyanuric acid and conductive reduced graphene oxide nanocomposites. Journal of Electroanalytical Chemistry, 2018, 814, 97-103.	1.9	14
193	Ultrastable radical-doped coordination compounds with antimicrobial activity against antibiotic-resistant bacteria. Chemical Communications, 2020, 56, 14353-14356.	2.2	14
194	Tunable covalent organic framework electrochemiluminescence from non-electroluminescent monomers. Cell Reports Physical Science, 2022, 3, 100630.	2.8	14
195	Deoxyribonucleic acid modified poly(dimethylsiloxane) microfluidic channels for the enhancement of microchip electrophoresis. Talanta, 2009, 77, 1647-1653.	2.9	13
196	Robust Colorimetric Detection of Cu2+ by Excessed Nucleotide Coordinated Nanozymes. Journal of Analysis and Testing, 2019, 3, 260-268.	2.5	13
197	Cobalt phosphide nanowires for fluorometric detection and in-situ imaging of telomerase activity via hybridization chain reactions. Mikrochimica Acta, 2019, 186, 309.	2.5	13
198	Fast and Selective Detection of Cr(III) in Environmental Water Samples Using Phosphovanadate Y(V _{0.2} P _{0.8} O ₄):Eu ³⁺ Fluorescence Nanorods. ACS Sensors, 2018, 3, 1569-1575.	4.0	12

#	Article	IF	CITATIONS
199	An ultrasensitive electrochemiluminescence resonance energy transfer biosensor for divalent mercury monitoring. Journal of Electroanalytical Chemistry, 2020, 856, 113494.	1.9	12
200	A ratiometric lanthanide fluorescent probe for highly sensitive detection of alkaline phosphatase and arsenate. Microchemical Journal, 2021, 164, 106027.	2.3	12
201	<l>ln Situ</l> Synthesis and Characterization of Multi-walled Carbon Nanotube/Prussian Blue Nanocomposite Materials and Application. Journal of Nanoscience and Nanotechnology, 2008, 8, 4453-4460.	0.9	11
202	Progress and challenges in predicting protein methylation sites. Molecular BioSystems, 2015, 11, 2610-2619.	2.9	11
203	Systematic Analysis of the Genetic Variability That Impacts SUMO Conjugation and Their Involvement in Human Diseases. Scientific Reports, 2015, 5, 10900.	1.6	11
204	Sensitive and homogeneous microRNA detection using branched cascade enzymatic amplification. Chemical Communications, 2015, 51, 10543-10546.	2.2	11
205	Decoration of carbon nanotubes with highly dispersed platinum nanoparticles for electrocatalytic application. Journal of Electroanalytical Chemistry, 2015, 738, 77-83.	1.9	11
206	Accurate prediction of species-specific 2-hydroxyisobutyrylation sites based on machine learning frameworks. Analytical Biochemistry, 2020, 602, 113793.	1.1	11
207	An Amperometric Glucose Biosensor Based on Titania Sol-gel/Prussian Blue Composite Film. Analytical Sciences, 2008, 24, 1425-1430.	0.8	10
208	A sensitive assay of telomerase activity based on the controllable aggregation of quantum dots. Sensors and Actuators B: Chemical, 2018, 277, 22-29.	4.0	10
209	mUSP: a high-accuracy map of the <i>in situ</i> crosstalk of ubiquitylation and SUMOylation proteome predicted via the feature enhancement approach. Briefings in Bioinformatics, 2021, 22, .	3.2	10
210	Covalent organic framework modified carbon nanotubes for removal of uranium (VI) from mining wastewater. Chemical Engineering Journal, 2022, 450, 138062.	6.6	10
211	A sensitive amperometric immunosensor for hepatitis B surface antigen based on biocompatible redox-active chitosan–toluidine blue/gold nanoparticles composite film. Analytical Methods, 2011, 3, 1338.	1.3	9
212	Amplification strategy for sensitive detection of methyltransferase activity based on surface plasma resonance techniques. Analytica Chimica Acta, 2018, 1016, 12-18.	2.6	8
213	Fluorescent Molybdenum Oxide Quantum Dots and Hg ^{II} Synergistically Accelerate Cobalt Porphyrin Formation: A New Strategy for Trace Hg ^{II} Analysis. ACS Applied Nano Materials, 2018, 1, 1484-1491.	2.4	8
214	Ultrasensitive detection of protein kinase activity based on the Au NPs mediated electrochemiluminescence amplification of S2O82â~–O2 system. Journal of Electroanalytical Chemistry, 2019, 833, 449-453.	1.9	8
215	Signalâ€Enhanced Amperometric Immunosensor Based on Ferroceneâ€Branched Poly(allylamine)/Multiwalled Carbon Nanotubes Redoxâ€Active Composite. Electroanalysis, 2011, 23, 1975-1983.	1.5	7
216	Computing Prediction and Functional Analysis of Prokaryotic Propionylation. Journal of Chemical Information and Modeling, 2017, 57, 2896-2904.	2.5	7

IF # ARTICLE CITATIONS Amorphous/Crystalline Heteroâ€Phase TiO₂â€Coated αâ€Fe₂O₃ Core–Shell Ńanospindles: A Highâ€Performance Artificial Nitrogen Fixation Electrocatalyst. Chemistry -A European Journal, 2020, 26, 10226-10229. Siteâ€Specific Systematic Analysis of Lysine Modification Crosstalk. Proteomics, 2018, 18, e1700292. 218 1.36 Luminescence determination of microRNAs based on the use of terbium(III) sensitized with an 219 2.5 enzyme-activated guanine-rich nucleotide. Mikrochimica Acta, 2018, 185, 280. Synthesis of Proton-conducting Electrolytes Based on Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 627 Td (fluoride-co-hexaflue 220 0.8 5 Polymers, 2009, 21, 484-500. Facile synthesis of fluorescent tungsten oxide quantum dots for telomerase detection based on the inner filter effect. Analyst, The, 2020, 145, 2570-2579. Porous BMTTPA–CS–GO nanocomposite for the efficient removal of heavy metal ions from aqueous 222 1.7 5 solutions. RSC Advances, 2021, 11, 3725-3731. Electrochemical assay of protein kinase activity based on the Fe3O4@PNE-Ti4+ functionalized PDMS microchip. Journal of Electroanalytical Chemistry, 2020, 877, 114645. A homology-based pipeline for global prediction of post-translational modification sites. Scientific 224 1.6 4 Reports, 2016, 6, 25801. A Labelâ€Free Amperometric Immunosensor Based on Redoxâ€Active Ferroceneâ€Branched Chitosan/Multiwalled Carbon Nanotubes Conductive Composite and Gold Nanoparticles. 1.5 Electroanalysis, 2011, 23, 719-727. Highly selective detection of disulfenylated proteins through a dimedone-based fluorescent probe 226 4.0 3 and application in cells. Sensors and Actuators B: Chemical, 2017, 238, 257-263. Ultrasensitively electrochemical detection activity of DNA methyltransferase using an autocatalytic 1.9 and recycling amplification strategy. Journal of Electroanalytical Chemistry, 2018, 808, 329-334. Regulation of multiple energy transfer processes in a simple nano-system for sensitive telomerase 228 2.6 3 detection. Analytica Chimica Acta, 2020, 1097, 135-143. Discrimination of single nucleotide polymorphisms by magnetic functionalized graphene oxide-based 1.9 microchip system. Journal of Electroanalytical Chemistry, 2020, 858, 113738. Electrochemical biosensor for telomerase activity assay based on HCR and dual interaction of the poly-adenine DNA with Au electrode and Ce-Ti dioxide nanorods. Journal of Electroanalytical 230 1.9 3 Chemistry, 2020, 877, 114633. Construction of Biomimetic Interface by Layer-by-Layer Self-Assembly Technique for Electrochemical Amperometric Immunosensing Applications. Chinese Journal of Analytical Chemistry, 2013, 41, 1795-1800. An alkali-resistant metal–organic framework as halogen bond donor for efficient and selective 232 2.7 2 removing of ReO4â[^]/TcO4â[^]. Environmental Science and Pollution Research, 2022, 29, 86815-86824. Wavelet fractal character of overlapping signal. Science Bulletin, 2003, 48, 44-49. 1.7 234 Wavelet fractal character of overlapping signal. Science Bulletin, 2003, 48, 44. 1.7 0

JIAN-DING OIU

#	Article	IF	CITATIONS
235	In situ synthesis and characterization of multi-walled carbon nanotube/Prussian blue nanocomposite materials and application. Journal of Nanoscience and Nanotechnology, 2008, 8, 4453-60.	0.9	0