Moritz Bigalke

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5646990/moritz-bigalke-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18 1,715 41 49 h-index g-index citations papers 6.6 5.6 2,231 55 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
49	Cadmium isotope fractionation in an intertidal soil induced by tidal pumping. <i>Environmental Advances</i> , 2022 , 8, 100182	3.5	
48	Microplastics in agricultural drainage water: A link between terrestrial and aquatic microplastic pollution. <i>Science of the Total Environment</i> , 2022 , 806, 150709	10.2	0
47	Identification and characterisation of individual nanoplastics by scanning transmission X-ray microscopy (STXM). <i>Journal of Hazardous Materials</i> , 2021 , 426, 127804	12.8	1
46	Global distribution of oxygenated polycyclic aromatic hydrocarbons in mineral topsoils. <i>Journal of Environmental Quality</i> , 2021 , 50, 717-729	3.4	1
45	Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. <i>Microbiome</i> , 2021 , 9, 103	16.6	7
44	250-year records of mercury and trace element deposition in two lakes from Cajas National Park, SW Ecuadorian Andes. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 16227-16243	5.1	4
43	Variations of sedimentary Fe and Mn fractions under changing lake mixing regimes, oxygenation and land surface processes during Late-glacial and Holocene times. <i>Science of the Total Environment</i> , 2021 , 755, 143418	10.2	5
42	A Systematic Analysis of Metal and Metalloid Concentrations in Eight Zebrafish Recirculating Water Systems. <i>Zebrafish</i> , 2021 , 18, 252-264	2	0
41	Tracing the fate of phosphorus fertilizer derived cadmium in soil-fertilizer-wheat systems using enriched stable isotope labeling. <i>Environmental Pollution</i> , 2021 , 287, 117314	9.3	6
40	Uranium Budget and Leaching in Swiss Agricultural Systems. <i>Frontiers in Environmental Science</i> , 2020 , 8,	4.8	4
39	Analytical Methods for Microplastics in Environments: Current Advances and Challenges. <i>Handbook of Environmental Chemistry</i> , 2020 , 3-24	0.8	11
38	Geochemical and hydrological controls of arsenic concentrations across the sediment water interface at Maharlu Lake, Southern Iran. <i>Applied Geochemistry</i> , 2019 , 102, 88-101	3.5	8
37	Temporal Trends of Phosphorus Cycling in a Tropical Montane Forest in Ecuador During 14lYears. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1370-1386	3.7	12
36	Foreword to the research front on Microplastics in Soils'. <i>Environmental Chemistry</i> , 2019 , 16, 1	3.2	3
35	Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. <i>ISME Journal</i> , 2019 , 13, 1639-1646	11.9	42
34	Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems. <i>Science of the Total Environment</i> , 2019 , 648, 779-786	10.2	32
33	A method for extracting soil microplastics through circulation of sodium bromide solutions. <i>Science of the Total Environment</i> , 2019 , 691, 341-347	10.2	66

(2017-2019)

32	Early diagenetic behavior of arsenic in the sediment of the hypersaline Maharlu Lake, southern Iran. <i>Chemosphere</i> , 2019 , 237, 124465	8.4	3
31	Corrigendum to: Foreword to the research front on Microplastics in Soils[]Environmental Chemistry, 2019 , 16, 149	3.2	1
30	The Fate of Zn in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling. <i>Environmental Science & Environmental Scienc</i>	10.3	26
29	Sorption kinetics of isotopically labelled divalent mercury (Hg) in soil. <i>Chemosphere</i> , 2019 , 221, 193-202	8.4	8
28	Towards an understanding of the Cd isotope fractionation during transfer from the soil to the cereal grain. <i>Environmental Pollution</i> , 2019 , 244, 834-844	9.3	28
27	Sources and fate of polycyclic aromatic compounds (PAHs, oxygenated PAHs and azaarenes) in forest soil profiles opposite of an aluminium plant. <i>Science of the Total Environment</i> , 2018 , 630, 83-95	10.2	14
26	Characterizing Major Controls on Spatial and Seasonal Variations in Chemical Composition of Surface and Pore Brine of Maharlu Lake, Southern Iran. <i>Aquatic Geochemistry</i> , 2018 , 24, 27-54	1.7	6
25	Microplastics in Swiss Floodplain Soils. Environmental Science & Environmental	10.3	476
24	Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling. <i>Environmental Science & Environmental Science & </i>	10.3	70
23	Zinc isotope fractionation during grain filling of wheat and a comparison of zinc and cadmium isotope ratios in identical soil-plant systems. <i>New Phytologist</i> , 2018 , 219, 195-205	9.8	31
22	An empirical perspective for understanding climate change impacts in Switzerland. <i>Regional Environmental Change</i> , 2018 , 18, 205-221	4.3	17
21	Uranium in agricultural soils and drinking water wells on the Swiss Plateau. <i>Environmental Pollution</i> , 2018 , 233, 943-951	9.3	16
20	Micro- and Nanoplastic Analysis in Soils. <i>Chimia</i> , 2018 , 72, 901	1.3	4
19	Response of copper concentrations and stable isotope ratios to artificial drainage in a French Retisol. <i>Geoderma</i> , 2017 , 300, 44-54	6.7	7
18	Isotopic variation of dissolved and colloidal iron and copper in a carbonatic floodplain soil after experimental flooding. <i>Chemical Geology</i> , 2017 , 459, 13-23	4.2	9
17	Accumulation of cadmium and uranium in arable soils in Switzerland. <i>Environmental Pollution</i> , 2017 , 221, 85-93	9.3	92
16	An Isotopic Dilution Approach for Quantifying Mercury Lability in Soils. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 556-561	11	7
15	Aluminum cycling in a tropical montane forest ecosystem in southern Ecuador. <i>Geoderma</i> , 2017 , 288, 196-203	6.7	6

14	Biological versus geochemical control and environmental change drivers of the base metal budgets of a tropical montane forest in Ecuador during 15 years. <i>Biogeochemistry</i> , 2017 , 136, 167-189	3.8	13
13	Response of Cu partitioning to flooding: A 🛭 5Cu approach in a carbonatic alluvial soil. <i>Chemical Geology</i> , 2016 , 420, 69-76	4.2	18
12	Soil Contamination with Trace Metals: Quantification, Speciation, and Source Identification. <i>Chimia</i> , 2016 , 70, 899	1.3	1
11	Cadmium Isotope Fractionation in Soil-Wheat Systems. <i>Environmental Science & Environmental Science & </i>	10.3	77
10	Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador:. <i>Plant and Soil</i> , 2015 , 388, 87-97	4.2	4
9	Fast colloidal and dissolved release of trace elements in a carbonatic soil after experimental flooding. <i>Geoderma</i> , 2015 , 259-260, 156-163	6.7	22
8	Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): bioaccumulation and health risk assessment. <i>Environment International</i> , 2014 , 65, 135-46	12.9	154
7	Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador: response of biomass and plant morphology to elevated Al concentrations. <i>Plant and Soil</i> , 2014 , 382, 301-315	4.2	16
6	Isotopes Trace Biogeochemistry and Sources of Cu and Zn in an intertidal soil. <i>Soil Science Society of America Journal</i> , 2013 , 77, 680-691	2.5	25
5	Short-term response of the Ca cycle of a montane forest in Ecuador to low experimental CaCl2 additions. <i>Journal of Plant Nutrition and Soil Science</i> , 2013 , 176, 892-903	2.3	11
4	Stable Cu isotope fractionation in soils during oxic weathering and podzolization. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 3119-3134	5.5	67
3	Stable Copper Isotopes: A Novel Tool to Trace Copper Behavior in Hydromorphic Soils. <i>Soil Science Society of America Journal</i> , 2010 , 74, 60-73	2.5	48
2	Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 6801-6813	5.5	148
1	Copper isotope fractionation during complexation with insolubilized humic acid. <i>Environmental Science & Environmental Science</i>	10.3	87