
Sebastian Proost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5646670/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42, 833-839.	9.4	1,891
2	The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011, 480, 520-524.	13.7	1,166
3	The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 2015, 47, 65-72.	9.4	413
4	Growth-Regulating Factors (GRFs): A Small Transcription Factor Family with Important Functions in Plant Biology. Molecular Plant, 2015, 8, 998-1010.	3.9	343
5	PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Research, 2015, 43, D974-D981.	6.5	329
6	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	13.7	283
7	The flowering world: a tale of duplications. Trends in Plant Science, 2009, 14, 680-688.	4.3	277
8	PLAZA: A Comparative Genomics Resource to Study Gene and Genome Evolution in Plants. Plant Cell, 2010, 21, 3718-3731.	3.1	243
9	Dissecting Plant Genomes with the PLAZA Comparative Genomics Platform Â. Plant Physiology, 2012, 158, 590-600.	2.3	238
10	i-ADHoRe 3.0—fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Research, 2012, 40, e11-e11.	6.5	192
11	FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nature Communications, 2013, 4, 2280.	5.8	142
12	Gamma Paleohexaploidy in the Stem Lineage of Core Eudicots: Significance for MADS-Box Gene and Species Diversification. Molecular Biology and Evolution, 2012, 29, 3793-3806.	3.5	127
13	Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression. BMC Genomics, 2009, 10, 288.	1.2	120
14	TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes. Genome Biology, 2013, 14, R134.	13.9	108
15	Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in <i>Brachypodium distachyon</i> . New Phytologist, 2017, 215, 1009-1025.	3.5	108
16	Phylogenomic analysis of gene coâ€expression networks reveals the evolution of functional modules. Plant Journal, 2017, 90, 447-465.	2.8	97
17	Beyond Genomics: Studying Evolution with Gene Coexpression Networks. Trends in Plant Science, 2017, 22, 298-307.	4.3	96
18	Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences, Journal of Experimental Botany, 2014, 65, 3975-3992	2.4	94

SEBASTIAN PROOST

#	Article	IF	CITATIONS
19	Journey through the past: 150 million years of plant genome evolution. Plant Journal, 2011, 66, 58-65.	2.8	91
20	CoNekT: an open-source framework for comparative genomic and transcriptomic network analyses. Nucleic Acids Research, 2018, 46, W133-W140.	6.5	81
21	Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. Nature Plants, 2021, 7, 1143-1159.	4.7	61
22	Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida. Nature Communications, 2019, 10, 737.	5.8	52
23	PlaNet: Comparative Co-Expression Network Analyses for Plants. Methods in Molecular Biology, 2017, 1533, 213-227.	0.4	42
24	Novel allelic variants in <i>ACD6</i> cause hybrid necrosis in local collection of <i>Arabidopsis thaliana</i> . New Phytologist, 2017, 213, 900-915.	3.5	40
25	LSTrAP: efficiently combining RNA sequencing data into co-expression networks. BMC Bioinformatics, 2017, 18, 444.	1.2	35
26	Multiâ€ŧissue integration of transcriptomic and specialized metabolite profiling provides tools for assessing the common bean (<i>Phaseolus vulgaris</i>) metabolome. Plant Journal, 2019, 97, 1132-1153.	2.8	33
27	Tools of the trade: studying molecular networks in plants. Current Opinion in Plant Biology, 2016, 30, 143-150.	3.5	31
28	Topology of the redox network during induction of photosynthesis as revealed by time-resolved proteomics in tobacco. Science Advances, 2021, 7, eabi8307.	4.7	27
29	A greedy, graph-based algorithm for the alignment of multiple homologous gene lists. Bioinformatics, 2011, 27, 749-756.	1.8	24
30	Appropriate Thiamin Pyrophosphate Levels Are Required for Acclimation to Changes in Photoperiod. Plant Physiology, 2019, 180, 185-197.	2.3	24
31	Kingdom-wide analysis of the evolution of the plant type III polyketide synthase superfamily. Plant Physiology, 2021, 185, 857-875.	2.3	20
32	The Effect of ß-Glucan Prebiotic on Kidney Function, Uremic Toxins and Gut Microbiome in Stage 3 to 5 Chronic Kidney Disease (CKD) Predialysis Participants: A Randomized Controlled Trial. Nutrients, 2022, 14, 805.	1.7	18
33	PhytoNet: comparative co-expression network analyses across phytoplankton and land plants. Nucleic Acids Research, 2018, 46, W76-W83.	6.5	16
34	Transcriptomics of manually isolated Amborella trichopoda egg apparatus cells. Plant Reproduction, 2019, 32, 15-27.	1.3	16
35	A novel seed plants gene regulates oxidative stress tolerance in Arabidopsis thaliana. Cellular and Molecular Life Sciences, 2020, 77, 705-718.	2.4	11
36	<i>AtRsgA</i> from <i>Arabidopsis thaliana</i> is important for maturation of the small subunit of the chloroplast ribosome. Plant Journal, 2018, 96, 404-420.	2.8	9

#	Article	IF	CITATIONS
37	The effect of oral iron supplementation on the gut microbiota, gut inflammation, and iron status in iron-depleted South African school-age children with virally suppressed HIV and without HIV. European Journal of Nutrition, 2022, 61, 2067-2078.	1.8	3
38	High-energy-level metabolism and transport occur at the transition from closed to open flowers. Plant Physiology, 2022, 190, 319-339.	2.3	2