Hugo J Spiers

List of Publications by Citations

Source: https://exaly.com/author-pdf/5646532/hugo-j-spiers-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

84 6,911 38 83 g-index

111 8,263 8 6.23 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
84	Prefrontal and medial temporal lobe interactions in long-term memory. <i>Nature Reviews Neuroscience</i> , 2003 , 4, 637-48	13.5	713
83	The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. <i>Neuron</i> , 2003 , 37, 877-88	13.9	658
82	London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. <i>Hippocampus</i> , 2006 , 16, 1091-101	3.5	574
81	A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. <i>NeuroImage</i> , 2001 , 14, 439-53	7.9	404
80	The cognitive map in humans: spatial navigation and beyond. <i>Nature Neuroscience</i> , 2017 , 20, 1504-1513	25.5	279
79	Thoughts, behaviour, and brain dynamics during navigation in the real world. <i>NeuroImage</i> , 2006 , 31, 182	2 6 9 0	257
78	Navigation expertise and the human hippocampus: a structural brain imaging analysis. <i>Hippocampus</i> , 2003 , 13, 250-9	3.5	252
77	Specialization in the medial temporal lobe for processing of objects and scenes. <i>Hippocampus</i> , 2005 , 15, 782-97	3.5	243
76	Unilateral temporal lobectomy patients show lateralized topographical and episodic memory deficits in a virtual town. <i>Brain</i> , 2001 , 124, 2476-89	11.2	228
75	Navigation around London by a taxi driver with bilateral hippocampal lesions. <i>Brain</i> , 2006 , 129, 2894-90	711.2	221
74	Hippocampal amnesia. <i>Neurocase</i> , 2001 , 7, 357-82	0.8	212
73	Bilateral hippocampal pathology impairs topographical and episodic memory but not visual pattern matching. <i>Hippocampus</i> , 2001 , 11, 715-25	3.5	166
72	The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. <i>Current Biology</i> , 2014 , 24, 1331-1340	6.3	161
71	A navigational guidance system in the human brain. <i>Hippocampus</i> , 2007 , 17, 618-26	3.5	155
70	Decoding human brain activity during real-world experiences. <i>Trends in Cognitive Sciences</i> , 2007 , 11, 356	5-65	140
69	Hippocampal place cells construct reward related sequences through unexplored space. <i>ELife</i> , 2015 , 4, e06063	8.9	140
68	Neural substrates of driving behaviour. <i>NeuroImage</i> , 2007 , 36, 245-55	7.9	124

67	Global Determinants of Navigation Ability. Current Biology, 2018, 28, 2861-2866.e4	6.3	118
66	Orientational manoeuvres in the dark: dissociating allocentric and egocentric influences on spatial memory. <i>Cognition</i> , 2004 , 94, 149-66	3.5	111
65	Double dissociation between hippocampal and parahippocampal responses to object-background context and scene novelty. <i>Journal of Neuroscience</i> , 2011 , 31, 5253-61	6.6	107
64	The dynamic nature of cognition during wayfinding. <i>Journal of Environmental Psychology</i> , 2008 , 28, 232	2-26 19	107
63	Spontaneous mentalizing during an interactive real world task: an fMRI study. <i>Neuropsychologia</i> , 2006 , 44, 1674-82	3.2	97
62	The neuroscience of remote spatial memory: a tale of two cities. <i>Neuroscience</i> , 2007 , 149, 7-27	3.9	92
61	Hippocampal and prefrontal processing of network topology to simulate the future. <i>Nature Communications</i> , 2017 , 8, 14652	17.4	85
60	A goal direction signal in the human entorhinal/subicular region. <i>Current Biology</i> , 2015 , 25, 87-92	6.3	85
59	Place field repetition and purely local remapping in a multicompartment environment. <i>Cerebral Cortex</i> , 2015 , 25, 10-25	5.1	78
58	Neural systems supporting navigation. <i>Current Opinion in Behavioral Sciences</i> , 2015 , 1, 47-55	4	77
57	Neural Mechanisms of Hierarchical Planning in a Virtual Subway Network. <i>Neuron</i> , 2016 , 90, 893-903	13.9	66
56	Path integration following temporal lobectomy in humans. <i>Neuropsychologia</i> , 2001 , 39, 452-64	3.2	63
55	Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 9285-9292	11.5	54
54	Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. <i>PLoS ONE</i> , 2019 , 14, e0213272	3.7	53
53	Enhance, delete, incept: manipulating hippocampus-dependent memories. <i>Brain Research Bulletin</i> , 2014 , 105, 2-7	3.9	50
52	Semantic representations in the temporal pole predict false memories. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 10180-5	11.5	49
51	Talent in the taxi: a model system for exploring expertise. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2009 , 364, 1407-16	5.8	47
50	Solving the detour problem in navigation: a model of prefrontal and hippocampal interactions. <i>Frontiers in Human Neuroscience</i> , 2015 , 9, 125	3.3	43

49	Egocentric versus Allocentric Spatial Memory in Behavioral Variant Frontotemporal Dementia and Alzheimer's Disease. <i>Journal of Alzheimer's Disease</i> , 2017 , 59, 883-892	4.3	40
48	Keeping the goal in mind: prefrontal contributions to spatial navigation. <i>Neuropsychologia</i> , 2008 , 46, 2106-8	3.2	40
47	Anterior prefrontal involvement in episodic retrieval reflects contextual interference. <i>NeuroImage</i> , 2005 , 28, 256-67	7.9	40
46	Human Spatial Navigation 2018,		35
45	Impaired spatial and non-spatial configural learning in patients with hippocampal pathology. <i>Neuropsychologia</i> , 2007 , 45, 2699-711	3.2	34
44	Hippocampal and Retrosplenial Goal Distance Coding After Long-term Consolidation of a Real-World Environment. <i>Cerebral Cortex</i> , 2019 , 29, 2748-2758	5.1	33
43	Contracted time and expanded space: The impact of circumnavigation on judgements of space and time. <i>Cognition</i> , 2017 , 166, 425-432	3.5	24
42	Hippocampal CA1 activity correlated with the distance to the goal and navigation performance. <i>Hippocampus</i> , 2018 , 28, 644-658	3.5	21
41	Oscillatory Reinstatement Enhances Declarative Memory. <i>Journal of Neuroscience</i> , 2017 , 37, 9939-9944	6.6	19
40	Transcranial electrical brain stimulation modulates neuronal tuning curves in perception of numerosity and duration. <i>NeuroImage</i> , 2014 , 102 Pt 2, 451-7	7.9	17
39	Anterior Temporal Lobe Tracks the Formation of Prejudice. <i>Journal of Cognitive Neuroscience</i> , 2017 , 29, 530-544	3.1	17
38	Familiarity expands space and contracts time. <i>Hippocampus</i> , 2017 , 27, 12-16	3.5	17
37	Cognitive mapping style relates to posterior-anterior hippocampal volume ratio. <i>Hippocampus</i> , 2019 , 29, 748-754	3.5	16
36	Sculptors, Architects, and Painters Conceive of Depicted Spaces Differently. <i>Cognitive Science</i> , 2018 , 42, 524-553	2.2	15
35	The Versatile Wayfinder: Prefrontal Contributions to Spatial Navigation. <i>Trends in Cognitive Sciences</i> , 2021 , 25, 520-533	14	15
34	Dissociation between dorsal and ventral posterior parietal cortical responses to incidental changes in natural scenes. <i>PLoS ONE</i> , 2013 , 8, e67988	3.7	14
33	Prefrontal Dynamics Associated with Efficient Detours and Shortcuts: A Combined Functional Magnetic Resonance Imaging and Magnetoencenphalography Study. <i>Journal of Cognitive Neuroscience</i> , 2019 , 31, 1227-1247	3.1	13
32	Does the Hippocampus Map Out the Future?. <i>Trends in Cognitive Sciences</i> , 2016 , 20, 167-169	14	13

31	Hippocampal place cells encode global location but not connectivity in a complex space. <i>Current Biology</i> , 2021 , 31, 1221-1233.e9	6.3	13
30	The Hippocampal Cognitive Map: One Space or Many?. <i>Trends in Cognitive Sciences</i> , 2020 , 24, 168-170	14	12
29	Backtracking during navigation is correlated with enhanced anterior cingulate activity and suppression of alpha oscillations and the Vdefault-modeVnetwork. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2019 , 286, 20191016	4.4	11
28	Striatal and hippocampal contributions to flexible navigation in rats and humans. <i>Brain and Neuroscience Advances</i> , 2020 , 4, 2398212820979772	4	11
27	Sleep enhances a spatially mediated generalization of learned values. <i>Learning and Memory</i> , 2015 , 22, 532-6	2.8	10
26	Diagnostic relevance of spatial orientation for vascular dementia: A case study. <i>Dementia E Neuropsychologia</i> , 2018 , 12, 85-91	2.1	10
25	Entropy of city street networks linked to future spatial navigation ability Nature, 2022,	50.4	9
24	Human Navigation: Occipital Place Area Detects Potential Paths in a Scene. <i>Current Biology</i> , 2017 , 27, R599-R600	6.3	7
23	Cities have a negative impact on navigation ability: evidence from 38 countries		7
22	A local anchor for the brain's compass. <i>Nature Neuroscience</i> , 2014 , 17, 1436-7	25.5	6
21	Explaining World-Wide Variation in Navigation Ability from Millions of People: Citizen Science Project Sea Hero Quest. <i>Topics in Cognitive Science</i> , 2021 ,	2.5	6
20	Spatial Cognition: Goal-Vector Cells in the Bat Hippocampus. <i>Current Biology</i> , 2017 , 27, R239-R241	6.3	5
19	Chronologically organized structure in autobiographical memory search. <i>Frontiers in Psychology</i> , 2015 , 6, 338	3.4	5
18	Test-retest reliability of spatial navigation in adults at-risk of Alzheimer's disease. <i>PLoS ONE</i> , 2020 , 15, e0239077	3.7	5
17	Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performanc	e	5
16	Neuroscience: teleporting mind into body and space. <i>Current Biology</i> , 2015 , 25, R448-50	6.3	4
15	Part or parcel? Contextual binding of events in episodic memory 2006 , 52-83		4
14	Spatial goal coding in the hippocampal formation <i>Neuron</i> , 2022 ,	13.9	4

13	Long-term consolidation switches goal proximity coding from hippocampus to retrosplenial cortex		4
12	Global determinants of navigation ability		4
11	Predictive Maps in Rats and Humans for Spatial Navigation: The Successor Representation Explains Flexible Behaviour		4
10	Spatial Cognition: Finding the Boundary in the Occipital Place Area. <i>Current Biology</i> , 2016 , 26, R323-5	6.3	3
9	What determines a boundary for navigating a complex street network: evidence from London taxi drivers. <i>Journal of Navigation</i> ,1-20	2.3	2
8	Manipulating Hippocampus-Dependent Memories: To Enhance, Delete or Incept? 2017 , 123-137		2
7	Learning The Knowledge: How London Taxi Drivers Build Their Cognitive Map of London		2
6	Computer models of saliency alone fail to predict subjective visual attention to landmarks during observed navigation. <i>Spatial Cognition and Computation</i> , 2021 , 21, 39-66	1.3	2
5	Spotting the path that leads nowhere: Modulation of human theta and alpha oscillations induced by trajectory changes during navigation		1
4	Exposure to high-rise buildings negatively influences affect: evidence from real world and 360-degree video. <i>Cities and Health</i> , 2020 , 1-13	2.8	1
3	London taxi drivers: A review of neurocognitive studies and an exploration of how they build their cognitive map of London <i>Hippocampus</i> , 2022 , 32, 3-20	3.5	1
2	Extending neural systems for navigation to hunting behavior <i>Current Opinion in Neurobiology</i> , 2022 , 73, 102545	7.6	1
1	Cracking the mnemonic code. <i>Nature Neuroscience</i> , 2016 , 20, 8-9	25.5	