Yavuz N Ertas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5646116/publications.pdf

Version: 2024-02-01

414303 361296 1,217 34 20 32 citations h-index g-index papers 35 35 35 1223 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: Experimental and simulation methods. Journal of Materials Processing Technology, 2018, 257, 288-301.	3.1	133
2	Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polymer Bulletin, 2015, 72, 2573-2589.	1.7	96
3	AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomedicine and Pharmacotherapy, 2022, 146, 112563.	2.5	95
4	3D Bioprinting of Oxygenated Cell‣aden Gelatin Methacryloyl Constructs. Advanced Healthcare Materials, 2020, 9, e1901794.	3.9	80
5	High-Throughput and Label-Free Single Nanoparticle Sizing Based on Time-Resolved On-Chip Microscopy. ACS Nano, 2015, 9, 3265-3273.	7.3	73
6	A Nanoparticle Catalyst for Heterogeneous Phase Paraâ€Hydrogenâ€Induced Polarization in Water. Angewandte Chemie - International Edition, 2015, 54, 2452-2456.	7.2	65
7	Microfluidics for reconfigurable electromagnetic metamaterials. Applied Physics Letters, 2009, 95, .	1.5	63
8	Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirusÂ2): diagnosis, treatment, therapy and future perspectives. Nanomedicine, 2021, 16, 497-516.	1.7	61
9	Advances in biomedical applications of self-healing hydrogels. Materials Chemistry Frontiers, 2021, 5, 4368-4400.	3.2	51
10	(Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioengineering and Translational Medicine, 2023, 8, .	3.9	46
11	Implantable magnetic nanofibers with <scp>ON–OFF</scp> switchable release of curcumin for possible local hyperthermic chemotherapy of melanoma. Journal of Biomedical Materials Research - Part A, 2022, 110, 851-860.	2.1	41
12	Nanoparticles for Targeted Drug Delivery to Cancer Stem Cells: A Review of Recent Advances. Nanomaterials, 2021, 11, 1755.	1.9	39
13	More Than 12 % Polarization and 20â€Minute Lifetime of ¹⁵ N in a Choline Derivative Utilizing Parahydrogen and a Rhodium Nanocatalyst in Water. Angewandte Chemie - International Edition, 2018, 57, 10692-10696.	7.2	36
14	Advanced Computational Methodologies Used in the Discovery of New Natural Anticancer Compounds. Frontiers in Pharmacology, 2021, 12, 702611.	1.6	33
15	Revealing the role of miRNA-489 as a new onco-suppressor factor in different cancers based on pre-clinical and clinical evidence. International Journal of Biological Macromolecules, 2021, 191, 727-737.	3.6	33
16	Gene regulation by antisense transcription: A focus on neurological and cancer diseases. Biomedicine and Pharmacotherapy, 2022, 145, 112265.	2.5	33
17	A Nanoparticle Catalyst for Heterogeneous Phase Paraâ€Hydrogenâ€Induced Polarization in Water. Angewandte Chemie, 2015, 127, 2482-2486.	1.6	24
18	EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomedicine and Pharmacotherapy, 2022, 146, 112532.	2.5	24

#	Article	IF	CITATIONS
19	Aqueous Ligand-Stabilized Palladium Nanoparticle Catalysts for Parahydrogen-Induced ¹³ C Hyperpolarization. Analytical Chemistry, 2017, 89, 7190-7194.	3.2	22
20	Oxide-Free Gadolinium Nanocrystals with Large Magnetic Moments. Chemistry of Materials, 2015, 27, 5371-5376.	3.2	20
21	More Than 12 % Polarization and 20â€Minute Lifetime of ¹⁵ N in a Choline Derivative Utilizing Parahydrogen and a Rhodium Nanocatalyst in Water. Angewandte Chemie, 2018, 130, 10852-10856.	1.6	19
22	Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). Emergent Materials, 2021, 4, 35-55.	3.2	19
23	Surface ligand-directed pair-wise hydrogenation for heterogeneous phase hyperpolarization. Chemical Communications, 2016, 52, 605-608.	2.2	17
24	Methods for fabricating oxygen releasing biomaterials. Journal of Drug Targeting, 2022, 30, 188-199.	2.1	16
25	Targeting AMPK signaling in ischemic/reperfusion injury: From molecular mechanism to pharmacological interventions. Cellular Signalling, 2022, 94, 110323.	1.7	15
26	Recent Advances in Cochlear Implant Electrode Array Design Parameters. Micromachines, 2022, 13, 1081.	1.4	14
27	Effects of multivariate linker substitution, metal binding, and reactor conditions on the catalytic activity of a Pd-functionalized MOF for olefin hydrogenation. Applied Catalysis A: General, 2014, 488, 248-255.	2.2	12
28	Noncoding RNAs and their therapeutics in paclitaxel chemotherapy: Mechanisms of initiation, progression, and drug sensitivity. Journal of Cellular Physiology, 2022, 237, 2309-2344.	2.0	11
29	Controlled nanocrystallinity in Gd nanobowls leads to magnetization of 226 emu/g. Journal of Applied Physics, 2017, 121, .	1.1	6
30	Effects of Cd vacancies and unconventional spin dynamics in the Dirac semimetal Cd3As2. Journal of Chemical Physics, 2017, 147, 084706.	1.2	6
31	Electrospinning and Three-Dimensional (3D) Printing for Biofabrication., 2022,, 555-604.		5
32	Therapeutic Approaches to Amyotrophic Lateral Sclerosis from the Lab to the Clinic. Current Drug Metabolism, 2022, 23, 200-222.	0.7	4
33	lan Situ Tissue Engineering: A New Dimension. , 2021, , 325-350.		2
34	Field-Portable Nanoparticle and Virus Sizing Enabled by On-Chip Microscopy and Vapor-Condensed Nanolenses. , 2015, , .		0