Kei Yasuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5645970/publications.pdf

Version: 2024-02-01

279701 454834 1,976 32 23 30 h-index citations g-index papers 34 34 34 2678 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Endosomal Translocation of Vertebrate DNA Activates Dendritic Cells via TLR9-Dependent and -Independent Pathways. Journal of Immunology, 2005, 174, 6129-6136.	0.4	239
2	Autoimmunity and Inflammation Due to a Gain-of-Function Mutation in Phospholipase \hat{Cl}^3 2 that Specifically Increases External Ca2+ Entry. Immunity, 2005, 22, 451-465.	6.6	159
3	Murine Dendritic Cell Type I IFN Production Induced by Human IgG-RNA Immune Complexes Is IFN Regulatory Factor (IRF)5 and IRF7 Dependent and Is Required for IL-6 Production. Journal of Immunology, 2007, 178, 6876-6885.	0.4	157
4	Murine B Cell Response to TLR7 Ligands Depends on an IFN- \hat{l}^2 Feedback Loop. Journal of Immunology, 2009, 183, 1569-1576.	0.4	119
5	CpG motif-independent activation of TLR9 upon endosomal translocation of "natural―phosphodiester DNA. European Journal of Immunology, 2006, 36, 431-436.	1.6	106
6	Requirement for DNA CpG Content in TLR9-Dependent Dendritic Cell Activation Induced by DNA-Containing Immune Complexes. Journal of Immunology, 2009, 183, 3109-3117.	0.4	104
7	Gene expression and antitumor effects following direct interferon (IFN)- \hat{I}^3 gene transfer with naked plasmid DNA and DC-chol liposome complexes in mice. Gene Therapy, 1999, 6, 121-129.	2.3	102
8	IFN Regulatory Factor 5 Is Required for Disease Development in the <i>FcγRIIBâ^'/â^'Yaa</i> and <i>FcγRIIBâ^'/â^'</i> Mouse Models of Systemic Lupus Erythematosus. Journal of Immunology, 2010, 184, 796-806.	0.4	91
9	Macrophage activation by a DNA/cationic liposome complex requires endosomal acidification and TLR9-dependent and -independent pathways. Journal of Leukocyte Biology, 2005, 77, 71-79.	1.5	86
10	The Peroxisome Proliferator-Activated Receptor \hat{I}^3 Agonist Rosiglitazone Ameliorates Murine Lupus by Induction of Adiponectin. Journal of Immunology, 2009, 182, 340-346.	0.4	86
11	Gene Expression during the Generation and Activation of Mouse Neutrophils: Implication of Novel Functional and Regulatory Pathways. PLoS ONE, 2014, 9, e108553.	1.1	83
12	The role of tissue macrophages in the induction of proinflammatory cytokine production following intravenous injection of lipoplexes. Gene Therapy, 2002, 9, 1120-1126.	2.3	71
13	Plasmid DNA activates murine macrophages to induce inflammatory cytokines in a CpG motif-independent manner by complex formation with cationic liposomes. Biochemical and Biophysical Research Communications, 2002, 293, 344-348.	1.0	70
14	Phenotype and function of B cells and dendritic cells from interferon regulatory factor 5-deficient mice with and without a mutation in DOCK2. International Immunology, 2013, 25, 295-306.	1.8	55
15	IRF5 Deficiency Ameliorates Lupus but Promotes Atherosclerosis and Metabolic Dysfunction in a Mouse Model of Lupus-Associated Atherosclerosis. Journal of Immunology, 2015, 194, 1467-1479.	0.4	50
16	TLR4 Ligands Induce IFN-α Production by Mouse Conventional Dendritic Cells and Human Monocytes after IFN-β Priming. Journal of Immunology, 2009, 182, 820-828.	0.4	49
17	DNA-like class R inhibitory oligonucleotides (INH-ODNs) preferentially block autoantigen-induced B-cell and dendritic cell activation in vitro and autoantibody production in lupus-prone MRL-Faslpr/lpr mice in vivo. Arthritis Research and Therapy, 2009, 11, R79.	1.6	48
18	c-Cbl targets PD-1 in immune cells for proteasomal degradation and modulates colorectal tumor growth. Scientific Reports, 2019, 9, 20257.	1.6	40

#	Article	IF	CITATIONS
19	Restricted cytokine production from mouse peritoneal macrophages in culture in spite of extensive uptake of plasmid DNA. Immunology, 2004, 111, 282-290.	2.0	39
20	Promotion of Inflammatory Arthritis by Interferon Regulatory Factor 5 in a Mouse Model. Arthritis and Rheumatology, 2015, 67, 3146-3157.	2.9	36
21	TLR sensing of bacterial spore-associated RNA triggers host immune responses with detrimental effects. Journal of Experimental Medicine, 2017, 214, 1297-1311.	4.2	33
22	Efficient uptake and rapid degradation of plasmid DNA by murine dendritic cells via a specific mechanism. Biochemical and Biophysical Research Communications, 2002, 299, 389-394.	1.0	31
23	Interferon Regulatory Factor-5 Deficiency Ameliorates Disease Severity in the MRL/lpr Mouse Model of Lupus in the Absence of a Mutation in DOCK2. PLoS ONE, 2014, 9, e103478.	1.1	26
24	Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses. ELife, 2020, 9, .	2.8	24
25	Lupus-Associated Immune Complexes Activate Human Neutrophils in an Fcl³RIIA-Dependent but TLR-Independent Response. Journal of Immunology, 2019, 202, 675-683.	0.4	20
26	Disposition and Gene Expression Characteristics in Solid Tumors and Skeletal Muscle after Direct Injection of Naked Plasmid DNA in Mice. Journal of Pharmaceutical Sciences, 2003, 92, 1295-1304.	1.6	16
27	DNA and its cationic lipid complexes induce CpG motif-dependent activation of murine dendritic cells. Immunology, 2007, 120, 295-302.	2.0	16
28	Role of Immunostimulatory DNA and TLR9 in Gene Therapy. Critical Reviews in Therapeutic Drug Carrier Systems, 2006, 23, 89-110.	1.2	8
29	The uptake and degradation of DNA is impaired in macrophages and dendritic cells from NZB/W F1 mice. Immunology Letters, 2005, 101, 32-40.	1.1	7
30	Monoallelic IRF5 deficiency in B cells prevents murine lupus. JCI Insight, 2021, 6, .	2.3	5
31	Effect of the Pore Structure of an Apatite-Fiber Scaffold on the Differentiation of P19.CL6 Cells into Cardiomyocytes. Key Engineering Materials, 2018, 782, 116-123.	0.4	0
32	II-03â€Generation of human myeloid dendritic cells from induced pluripotent stem cells for the evaluation of gene polymorphism function in lupus. , 2018, , .		0