Tokihiro Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5645596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retrospective Analysis of Artifacts in Four-Dimensional CT Images of 50 Abdominal and Thoracic Radiotherapy Patients. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1250-1258.	0.4	215
2	Impact of Four-Dimensional Computed Tomography Pulmonary Ventilation Imaging-Based Functional Avoidance for Lung Cancer Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2011, 79, 279-288.	0.4	127
3	Pulmonary Ventilation Imaging Based on 4-Dimensional Computed Tomography: Comparison With Pulmonary Function Tests andÂSPECT Ventilation Images. International Journal of Radiation Oncology Biology Physics, 2014, 90, 414-422.	0.4	81
4	The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer. Radiotherapy and Oncology, 2016, 118, 227-231.	0.3	81
5	Radiomics-based Assessment of Radiation-induced Lung Injury After Stereotactic Body Radiotherapy. Clinical Lung Cancer, 2017, 18, e425-e431.	1.1	76
6	Investigation of four-dimensional computed tomography-based pulmonary ventilation imaging in patients with emphysematous lung regions. Physics in Medicine and Biology, 2011, 56, 2279-2298.	1.6	68
7	Fourâ€dimensional computed tomography pulmonary ventilation images vary with deformable image registration algorithms and metrics. Medical Physics, 2011, 38, 1348-1358.	1.6	63
8	The VAMPIRE challenge: A multiâ€institutional validation study of CT ventilation imaging. Medical Physics, 2019, 46, 1198-1217.	1.6	59
9	Reproducibility of Four-dimensional Computed Tomography-based Lung Ventilation Imaging. Academic Radiology, 2012, 19, 1554-1565.	1.3	53
10	4D CT lung ventilation images are affected by the 4D CT sorting method. Medical Physics, 2013, 40, 101907.	1.6	52
11	Evaluating the Toxicity Reduction With Computed Tomographic Ventilation Functional Avoidance Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2017, 99, 325-333.	0.4	52
12	Evaluating Which Dose-Function Metrics Are Most Critical for Functional-Guided Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2017, 99, 202-209.	0.4	45
13	Cone-beam computed tomography-based delta-radiomics for early response assessment in radiotherapy for locally advanced lung cancer. Physics in Medicine and Biology, 2020, 65, 015009.	1.6	37
14	CT ventilation functional image-based IMRT treatment plans are comparable to SPECT ventilation functional image-based plans. Radiotherapy and Oncology, 2016, 118, 521-527.	0.3	34
15	Imaging of normal lung, liver and parotid gland function for radiotherapy. Acta Oncológica, 2010, 49, 997-1011.	0.8	28
16	Imaging of regional ventilation: Is CT ventilation imaging the answer? A systematic review of the validation data. Radiotherapy and Oncology, 2019, 137, 175-185.	0.3	20
17	The impact of audio-visual biofeedback on 4D PET images: Results of a phantom study. Medical Physics, 2012, 39, 1046-1057.	1.6	18
18	The potential of positron emission tomography for intratreatment dynamic lung tumor tracking: A phantom study. Medical Physics, 2014, 41, 021718.	1.6	18

#	Article	IF	CITATIONS
19	Changes in Regional Ventilation During Treatment and Dosimetric Advantages of CT Ventilation Image Guided Radiation Therapy for Locally Advanced Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1366-1373.	0.4	17
20	"Dose of the day―based on cone beam computed tomography and deformable image registration for lung cancer radiotherapy. Journal of Applied Clinical Medical Physics, 2020, 21, 88-94.	0.8	16
21	Development of a deformable lung phantom with 3Dâ€printed flexible airways. Medical Physics, 2020, 47, 898-908.	1.6	14
22	Trends in the Practice of Radiotherapy for Localized Prostate Cancer in Japan: a Preliminary Patterns of Care Study Report. Japanese Journal of Clinical Oncology, 2003, 33, 527-532.	0.6	12
23	The impact of audiovisual biofeedback on 4D functional and anatomic imaging: Results of a lung cancer pilot study. Radiotherapy and Oncology, 2016, 120, 267-272.	0.3	10
24	Characterization and clinical validation of patient-specific three-dimensional printed tissue-equivalent bolus for radiotherapy of head and neck malignancies involving skin. Physica Medica, 2020, 77, 138-145.	0.4	10
25	Patterns of Care Study: Comparison of Process of Post-mastectomy Radiotherapy (PMRT) in Japan and the USA. Japanese Journal of Clinical Oncology, 2003, 33, 518-521.	0.6	9
26	Monte Carlo calculation of depth doses for small field of CyberKnife. Radiation Medicine, 2002, 20, 305-10.	0.8	9
27	Radical External Beam Radiotherapy for Prostate Cancer in Japan: Preliminary Results of the 1999-2001 Patterns of Care Process Survey. Japanese Journal of Clinical Oncology, 2004, 34, 29-36.	0.6	8
28	Noninvasive pulmonary nodule elastometry by CT and deformable image registration. Radiotherapy and Oncology, 2015, 115, 35-40.	0.3	7
29	Radical External Beam Radiotherapy for Prostate Cancer in Japan: Preliminary Results of the Changing Trends in the Patterns of Care Process Survey between 1996-1998 and 1999-2001. Japanese Journal of Clinical Oncology, 2004, 34, 131-136.	0.6	6
30	Singleâ€energy computed tomographyâ€based pulmonary perfusion imaging: Proofâ€ofâ€principle in a canine model. Medical Physics, 2016, 43, 3998-4007.	1.6	6
31	Variations Between Dose-Ventilation and Dose-Perfusion Metrics in Radiation Therapy Planning for Lung Cancer. Advances in Radiation Oncology, 2020, 5, 459-465.	0.6	5
32	Anatomic optimization of lung tumor stereotactic ablative radiation therapy. Practical Radiation Oncology, 2015, 5, e607-e613.	1.1	4
33	Treatment planning based on lung functional avoidance is not ready for clinical deployment. Medical Physics, 2018, 45, 2353-2356.	1.6	4
34	Prognostic Value of Computed Tomography and/or 18F-Fluorodeoxyglucose Positron Emission Tomography Radiomics Features in Locally Advanced Non-small Cell Lung Cancer. Clinical Lung Cancer, 2021, 22, 461-468.	1.1	4
35	Quantitative assessment of ventilation-perfusion relationships with gallium-68 positron emission tomography/computed tomography imaging in lung cancer patients. Physics and Imaging in Radiation Oncology, 2022, 22, 8-12.	1.2	4
36	Patterns of Care Study in Japan: Analysis of Patients Subjected to Mastectomy Followed by Radiotherapy. Japanese Journal of Clinical Oncology, 2003, 33, 456-462.	0.6	3

Τοκιμικό Υληματό

#	Article	IF	CITATIONS
37	A Feasibility Study of Single-inhalation, Single-energy Xenon-enhanced CT for High-resolution Imaging of Regional Lung Ventilation in Humans. Academic Radiology, 2019, 26, 38-49.	1.3	2
38	Technical Note: Correction for the effect of breathing variations in CT pulmonary ventilation imaging. Medical Physics, 2018, 45, 322-327.	1.6	1
39	Combined Assessment of Pulmonary Ventilation and Perfusion with Single-Energy Computed Tomography and Image Processing. Academic Radiology, 2021, 28, 636-646.	1.3	1
40	Radiomics-based assessment of radiation-induced lung injury after stereotactic ablative radiotherapy Journal of Clinical Oncology, 2016, 34, e23156-e23156.	0.8	0