
## Ping Li

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5645326/publications.pdf Version: 2024-02-01



DINCL

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Revealing failure modes and effect of catalyst layer properties for PEM fuel cell cold start using an agglomerate model. Applied Energy, 2022, 312, 118792.                                                                                 | 10.1 | 11        |
| 2  | Quantification of surface orientation effect on the thermal stability of Î <sup>3</sup> -Al2O3 with different morphologies. Applied Surface Science, 2022, 594, 153509.                                                                     | 6.1  | 5         |
| 3  | Hierarchical Numbering-Up of Modular Reactors: A Multi-Objective Optimization Approach. Chemical Engineering Journal, 2022, , 137781.                                                                                                       | 12.7 | 3         |
| 4  | Solvation dynamics in simple fluids: Effect of solute size and potential. Chemical Engineering Science, 2021, 232, 116371.                                                                                                                  | 3.8  | 3         |
| 5  | Carbon nanotubes-supported Pt catalysts for decalin dehydrogenation to release hydrogen: A<br>comparison between nitrogen- and oxygen-surface modification. International Journal of Hydrogen<br>Energy, 2021, 46, 930-942.                 | 7.1  | 8         |
| 6  | Sulfidation of MoO <sub>3</sub> /l̂³-Al <sub>2</sub> O <sub>3</sub> towards a highly efficient catalyst<br>for CH <sub>4</sub> reforming with H <sub>2</sub> S. Catalysis Science and Technology, 2021, 11,<br>1125-1140.                   | 4.1  | 8         |
| 7  | Partial positively charged Pt in Pt/MgAl2O4 for enhanced dehydrogenation activity. Applied Catalysis<br>B: Environmental, 2021, 288, 119996.                                                                                                | 20.2 | 44        |
| 8  | Dynamical density functional theory for solvation dynamics in polar solvent: Heterogeneous effect of solvent orientation. Chemical Engineering Science, 2021, 246, 116978.                                                                  | 3.8  | 9         |
| 9  | Searching for efficient defect types in carbon nanofibers to promote supported Pt catalytic activity for dehydrogenation reaction. Catalysis Today, 2020, 347, 87-95.                                                                       | 4.4  | 7         |
| 10 | Deactivation and regeneration of Claus catalyst particles unraveled by pore network model. Chemical Engineering Science, 2020, 211, 115305.                                                                                                 | 3.8  | 12        |
| 11 | Thermal stability analysis of cold start processes in PEM fuel cells. Applied Energy, 2020, 261, 114430.                                                                                                                                    | 10.1 | 29        |
| 12 | Hierarchical Fe-modified MgAl <sub>2</sub> O <sub>4</sub> as a Ni-catalyst support for methane dry reforming. Catalysis Science and Technology, 2020, 10, 6987-7001.                                                                        | 4.1  | 22        |
| 13 | Selective hydrogen combustion in the presence of propylene and propane over Pt/A-zeolite catalysts.<br>International Journal of Hydrogen Energy, 2020, 45, 12347-12359.                                                                     | 7.1  | 5         |
| 14 | A monolith CuNiFe/γ-Al2O3/Al catalyst for steam reforming of dimethyl ether and applied in a microreactor. International Journal of Hydrogen Energy, 2019, 44, 2417-2425.                                                                   | 7.1  | 17        |
| 15 | Effects of the Facet Orientation of γâ€Al <sub>2</sub> O <sub>3</sub> Support on the Direct Synthesis of<br>H <sub>2</sub> O <sub>2</sub> Catalyzed by Pd Nanoparticles. European Journal of Inorganic<br>Chemistry, 2018, 2018, 1715-1725. | 2.0  | 12        |
| 16 | Insight into the support effect on the particle size effect of Pt/C catalysts in dehydrogenation.<br>Journal of Catalysis, 2018, 360, 175-186.                                                                                              | 6.2  | 78        |
| 17 | Decoding Atomic-Level Structures of the Interface between Pt Sub-nanocrystals and Nanostructured<br>Carbon. Journal of Physical Chemistry C, 2018, 122, 7166-7178.                                                                          | 3.1  | 4         |
| 18 | Density functional theory study of decalin dehydrogenation for hydrogen release on Pt(111) and<br>Pt(211). International Journal of Hydrogen Energy, 2018, 43, 19575-19588.                                                                 | 7.1  | 19        |

Ping Li

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Fabrication of three-dimensional buckypaper catalyst layer with Pt nanoparticles supported on<br>polyelectrolyte functionalized carbon nanotubes for proton exchange membrane fuel cells. Journal<br>of Power Sources, 2018, 393, 19-31. | 7.8  | 27        |
| 20 | A Pt content and pore structure gradient distributed catalyst layer to improve the PEMFC performance. International Journal of Hydrogen Energy, 2017, 42, 7241-7245.                                                                     | 7.1  | 47        |
| 21 | Graphene–CNT composite as catalyst support for microwave-assisted hydrogen releasing from liquid<br>organic hydride. International Journal of Hydrogen Energy, 2017, 42, 17403-17413.                                                    | 7.1  | 13        |
| 22 | Microwave-assisted hydrogen releasing from liquid organic hydride over Pt/CNT catalyst: Effects of oxidation treatment of CNTs. Catalysis Today, 2016, 276, 121-127.                                                                     | 4.4  | 16        |
| 23 | Kinetic behavior of Pt catalyst supported on structured carbon nanofiber bed during hydrogen releasing from decalin. International Journal of Hydrogen Energy, 2016, 41, 10755-10765.                                                    | 7.1  | 11        |
| 24 | Synthesis and identification of hierarchical γ-AlOOH self-assembled by nanosheets with adjustable exposed facets. CrystEngComm, 2016, 18, 4546-4554.                                                                                     | 2.6  | 18        |
| 25 | Simultaneous recovery of carbon and sulfur resources from reduction of CO 2 with H 2 S using catalysts. Journal of Energy Chemistry, 2016, 25, 110-116.                                                                                  | 12.9 | 9         |
| 26 | Engineering Pt/carbon-nanofibers/carbon-paper composite towards highly efficient catalyst for<br>hydrogen evolution from liquid organic hydride. International Journal of Hydrogen Energy, 2015, 40,<br>12217-12226.                     | 7.1  | 15        |
| 27 | Mechanistic Insight into Size-Dependent Activity and Durability in Pt/CNT Catalyzed Hydrolytic<br>Dehydrogenation of Ammonia Borane. Journal of the American Chemical Society, 2014, 136, 16736-16739.                                   | 13.7 | 273       |
| 28 | Effects of carbon support on microwave-assisted catalytic dehydrogenation of decalin. Carbon, 2014, 67, 775-783.                                                                                                                         | 10.3 | 21        |
| 29 | Support effects on catalytic performance for selective combustion of hydrogen in the presence of propene. Fuel Processing Technology, 2013, 108, 82-88.                                                                                  | 7.2  | 8         |
| 30 | Evolution of Pt Nanoparticles Supported on Fishbone-Type Carbon Nanofibers with Cone–Helix<br>Structures: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2013, 117, 14261-14271.                                           | 3.1  | 10        |
| 31 | Effect of Ag on the control of Ni-catalyzed carbon formation: A density functional theory study.<br>Catalysis Today, 2012, 186, 54-62.                                                                                                   | 4.4  | 52        |
| 32 | Preparation of thermostable electroconductive composite plates from expanded graphite and polyimide. Materials Chemistry and Physics, 2012, 134, 1160-1166.                                                                              | 4.0  | 19        |
| 33 | Pressure Drop and Residence Time Distribution in Carbon-Nanofiber/Graphite-Felt Composite for<br>Single Liquid-Phase Flow. Industrial & Engineering Chemistry Research, 2011, 50, 9431-9436.                                             | 3.7  | 3         |
| 34 | Preparation of CNF-supported Pt catalysts for hydrogen evolution from decalin. Materials Chemistry and Physics, 2011, 126, 41-45.                                                                                                        | 4.0  | 20        |
| 35 | Kinetically controlled synthesis of carbon nanofibers with different morphologies by catalytic CO disproportionation over iron catalyst. Chemical Engineering Science, 2010, 65, 193-200.                                                | 3.8  | 9         |
| 36 | Carbon Nanofiber-Supported Ru Catalysts for Hydrogen Evolution by Ammonia Decomposition.<br>Chinese Journal of Catalysis, 2010, 31, 979-986.                                                                                             | 14.0 | 48        |

Ping Li

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Pressure Drop of Structured Packing of Carbon Nanofiber Composite. Industrial & Engineering<br>Chemistry Research, 2010, 49, 3944-3951.                                                                                                          | 3.7  | 7         |
| 38 | Synthesis of hydrogen peroxide from H2 and O2 in water and ethanol catalyzed by nanoclustered PdO<br>on silica: strong selectivity enhancement exerted by the addition of ionic liquids. Physical Chemistry<br>Chemical Physics, 2010, 12, 2170. | 2.8  | 9         |
| 39 | Study on the Synthesis of Clay-Based Titanium Silicalite-1 Catalytic Composite. Industrial &<br>Engineering Chemistry Research, 2009, 48, 5266-5275.                                                                                             | 3.7  | 13        |
| 40 | Enhanced Distribution and Anchorage of Carbon Nanofibers Grown on Structured Carbon<br>Microfibers. Journal of Physical Chemistry C, 2009, 113, 1301-1307.                                                                                       | 3.1  | 18        |
| 41 | CNFs-supported Pt catalyst for hydrogen evolution from decalin. Catalysis Communications, 2009, 10, 815-818.                                                                                                                                     | 3.3  | 37        |
| 42 | Synthesis and characterization of titanium silicate-1 supported on carbon nanofiber. Microporous and Mesoporous Materials, 2008, 108, 311-317.                                                                                                   | 4.4  | 24        |
| 43 | Effect of carbon nanofiber microstructure on oxygen reduction activity of supported palladium electrocatalyst. Electrochemistry Communications, 2007, 9, 895-900.                                                                                | 4.7  | 81        |
| 44 | Structural characterization of carbon nanofibers formed from different carbon-containing gases.<br>Carbon, 2006, 44, 3255-3262.                                                                                                                  | 10.3 | 106       |
| 45 | Synthesis of carbon nanofiber/graphite-felt composite as a catalyst. Microporous and Mesoporous<br>Materials, 2006, 95, 1-7.                                                                                                                     | 4.4  | 64        |
| 46 | Characterization of carbon nanofiber composites synthesized by shaping process. Carbon, 2005, 43, 2701-2710.                                                                                                                                     | 10.3 | 85        |
| 47 | Microwave-assisted catalytic combustion of diesel soot. Applied Catalysis A: General, 1997, 159, 211-228.                                                                                                                                        | 4.3  | 57        |